

User Guide

Affinity

Model sizes 1 to 6

Building Automation HVAC/R drive

Part Number: 0474-0000-03

Issue: 3

General Information

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional operating parameters of the equipment or from mismatching the variable speed drive with the motor.

The contents of this guide are believed to be correct at the time of printing. In the interests of a commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the contents of the guide, without notice.

All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher.

Drive and Building Automation interface software version

This product is supplied with the latest version of software. If this product is to be used in a new or existing system with other drives, there may be some differences between their software and the software in this product. These differences may cause this product to function differently. This may also apply to drives returned from a Control Techniques Service Centre.

The software version of the drive can be checked by looking at Pr 11.29 (or Pr 0.50) and Pr 11.34. The software version takes the form of zz.yy.xx, where Pr 11.29 displays zz.yy and Pr 11.34 displays xx, i.e. for software version 01.01.00, Pr 11.29 would display 1.01 and Pr 11.34 would display 0.

The software version of the Building Automation interface can be checked by looking at Pr 17.02 and Pr 17.51. The software version takes the form of zz.yy.xx, where Pr 17.02 displays zz.yy and Pr 17.51 displays xx.

If there is any doubt, contact a Control Techniques Drive Centre.

Environmental statement

Control Techniques is committed to minimising the environmental impacts of its manufacturing operations and of its products throughout their life cycle. To this end, we operate an Environmental Management System (EMS) which is certified to the International Standard ISO 14001. Further information on the EMS, our Environmental Policy and other relevant information is available on request, or can be found at www.greendrives.com.

The electronic variable-speed drives manufactured by Control Techniques have the potential to save energy and (through increased machine/process efficiency) reduce raw material consumption and scrap throughout their long working lifetime. In typical applications, these positive environmental effects far outweigh the negative impacts of product manufacture and end-of-life disposal.

Nevertheless, when the products eventually reach the end of their useful life, they can very easily be dismantled into their major component parts for efficient recycling. Many parts snap together and can be separated without the use of tools, while other parts are secured with conventional screws. Virtually all parts of the product are suitable for recycling.

Product packaging is of good quality and can be re-used. Large products are packed in wooden crates, while smaller products come in strong cardboard cartons which themselves have a high recycled fibre content. If not re-used, these containers can be recycled. Polythene, used on the protective film and bags for wrapping product, can be recycled in the same way. Control Techniques' packaging strategy favours easily-recyclable materials of low environmental impact, and regular reviews identify opportunities for improvement.

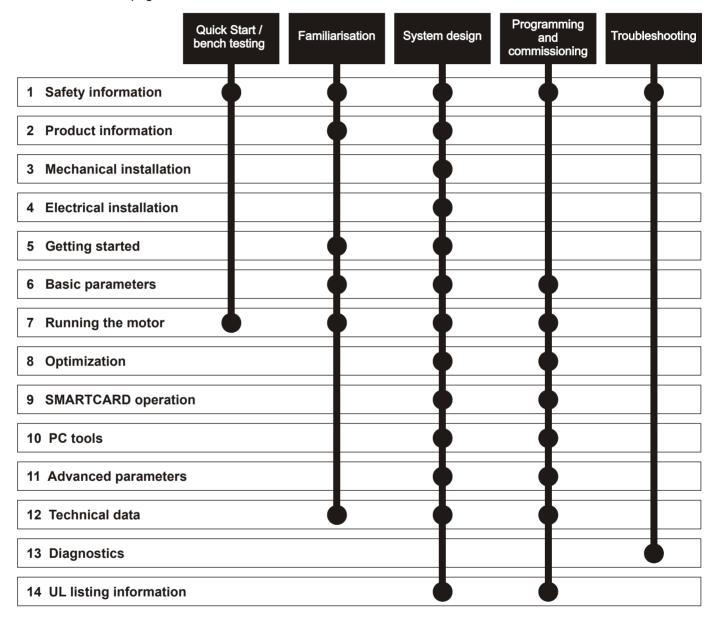
When preparing to recycle or dispose of any product or packaging, please observe local legislation and best practice.

Copyright © March 2008 Control Techniques Drives Limited

Issue Number: 3

Software: 01.02.00 onwards

How to use this guide


This user guide provides complete information for installing and operating the drive from start to finish.

The information is in logical order, taking the reader from receiving the drive through to fine tuning the performance.

NOTE

There are specific safety warnings throughout this guide, located in the relevant sections. In addition, Chapter 1 *Safety Information* contains general safety information. It is essential that the warnings are observed and the information considered when working with or designing a system using the drive.

This map of the user guide helps to find the right sections for the task you wish to complete, but for specific information, refer to *Contents* on page 4:

Contents

1	Safety Information	8	5	Getting Started	86
1.1	Warnings, Cautions and Notes	8	5.1	Understanding the display	86
1.2	Electrical safety - general warning		5.2	Keypad operation	
1.3	System design and safety of personnel	8	5.3	Menu structure	
1.4	Environmental limits		5.4	Menu 0	88
1.5	Compliance with regulations	8	5.5	Advanced menus	88
1.6	Motor		5.6	Changing the operating mode	
1.7	Adjusting parameters		5.7	Changing the keypad mode	
			5.8	Saving parameters	
2	Product Information	9	5.9	Restoring parameter defaults	
2.1	Introduction	9	5.10	Parameter access level and security	
2.2	Drive types		5.11	Displaying parameters with non-default value	
2.3	Ratings			only	
2.4	Model number		5.12	Displaying destination parameters only	
2.5	Operating modes		5.13	Communications	
2.6	Drive features		0.10		
2.7	Nameplate description		6	Basic parameters	94
2.8	Options		6.1	Single line descriptions	
2.9	Items supplied with the drive		6.2	Full descriptions	
	• •			·	
3	Mechanical Installation		7	Running the motor	
3.1	Safety information		7.1	Quick start Connections	
3.2	Planning the installation		7.2	Changing the operating mode	
3.3	Terminal cover removal		7.3	Changing keypad mode	
3.4	Solutions Module / keypad installation / remo		7.4	Quick Start commissioning/start-up	110
3.5	Mounting methods		8	Optimization	112
3.6	Enclosure for standard drives	45		-	
3.7	Enclosure design and drive ambient		8.1	Motor map parameters	
	temperature		8.2	Current limits	
3.8	Enclosing standard drive for high environment		8.3	Motor thermal protection	
	protection		8.4	Switching frequency	
3.9	External EMC filter for standard drives		8.5	High speed operation	118
3.10	Electrical terminals		9	SMARTCARD operation	110
3.11	Routine maintenance	57			
	Flootrical Installation	co	9.1	Introduction	
4	Electrical Installation		9.2	Transferring data	
4.1	Power connections		9.3	Data block header information	
4.2	AC supply requirements		9.4	SMARTCARD parameters	
4.3	Auxiliary power supply		9.5	SMARTCARD trips	123
4.4	Supplying the drive with DC / DC bus paralle	_	10	PC tools	125
4.5	Fan connections				
4.6	Control 24Vdc supply	65	10.1	AffinitySoft	
4.7	Ratings	65	10.2	Onboard PLC and SYPTLite	
4.8	Output circuit and motor protection	68	10.3	CT Energy Savings Estimator	127
4.9	Braking	70			
4.10	Ground leakage	72			
4.11	EMC (Electromagnetic compatibility)	72			
4.12	PC communications connections				
4.13	Terminal connections				
4.14	Building automation network connections				
4.15	Heatsink fan supply connections (size 4 to 6)				
-	117				

	Advanced parameters	
11.1	Menu 1: Frequency / speed reference	136
11.2	Menu 2: Ramps	
11.3	Menu 3: Speed feedback and speed control	
11.4	Menu 4: Torque and current control	
11.5	Menu 5: Motor control	
11.6	Menu 6: Sequencer and clock	
11.7	Menu 7: Analog I/O	
11.8	Menu 8: Digital I/O	158
11.9	Menu 9: Programmable logic, motorized pot,	
	binary sum and timers	
	Menu 10: Status and trips	
	Menu 11: General drive set-up	167
11.12	Menu 12: Threshold detectors, variable	
	selectors and brake control function	
	Menu 14: User PID controller	
	Menus 15 and 16: Solutions Module set-up	
	Menu 17: Building Automation Network	
	Menu 18: Application menu 1	
	Menu 19: Application menu 2	
	Menu 20: Application menu 3	
	Menu 21: Second motor parameters	
	Menu 22: Additional Menu 0 set-up	
11.21	Advanced features	202
12	Technical Data	214
12 12 1	Technical Data	
12.1	Drive technical data	214
12.1 12.2	Drive technical data Optional external EMC filters	214 232
12.1	Drive technical data	214 232
12.1 12.2	Drive technical data Optional external EMC filters	214 232 235
12.1 12.2 13	Drive technical data Optional external EMC filters Diagnostics	214 232 235 235
12.1 12.2 13 13.1	Drive technical data Optional external EMC filters Diagnostics Trip indications	214 232 235 235 247
12.1 12.2 13 13.1 13.2	Drive technical data Optional external EMC filters Diagnostics Trip indications Alarm indications Status indications Displaying the trip history	214 232 235 235 247 247
12.1 12.2 13 13.1 13.2 13.3	Drive technical data Optional external EMC filters Diagnostics Trip indications Alarm indications Status indications	214 232 235 235 247 247
12.1 12.2 13 13.1 13.2 13.3 13.4 13.5	Drive technical data Optional external EMC filters Diagnostics	214 232 235 247 247 248
12.1 12.2 13 13.1 13.2 13.3 13.4 13.5	Drive technical data	214 232 235 247 247 248 248
12.1 12.2 13 13.1 13.2 13.3 13.4 13.5 14	Drive technical data	214 232 235 247 247 248 248 249
12.1 12.2 13 13.1 13.2 13.3 13.4 13.5 14 14.1	Drive technical data Optional external EMC filters Diagnostics Trip indications	214 235 235 247 247 248 248 249 249
12.1 12.2 13 13.1 13.2 13.3 13.4 13.5 14 14.1 14.2 14.3	Drive technical data	214 235 235 247 247 248 248 249 249
12.1 12.2 13 13.1 13.2 13.3 13.4 13.5 14.1 14.1 14.2 14.3 14.4	Drive technical data	214 235 235 247 248 248 249 249 249
12.1 12.2 13 13.1 13.2 13.3 13.4 13.5 14.1 14.2 14.3 14.4 14.5	Drive technical data Optional external EMC filters Diagnostics Trip indications Alarm indications Status indications Displaying the trip history Behaviour of the drive when tripped UL Listing Information Common UL information Power dependant UL information AC supply specification Maximum continuous output current Safety label	214 235 235 247 248 248 249 249 249 249
12.1 12.2 13 13.1 13.2 13.3 13.4 13.5 14.1 14.1 14.2 14.3 14.4	Drive technical data	214 235 235 247 248 248 249 249 249 249
12.1 12.2 13 13.1 13.2 13.3 13.4 13.5 14.1 14.2 14.3 14.4 14.5	Drive technical data Optional external EMC filters Diagnostics Trip indications Alarm indications Status indications Displaying the trip history Behaviour of the drive when tripped UL Listing Information Common UL information Power dependant UL information AC supply specification Maximum continuous output current Safety label	214 235 235 247 248 248 249 249 249 250
12.1 12.2 13 13.1 13.2 13.3 13.4 13.5 14.1 14.2 14.3 14.4 14.5	Drive technical data Optional external EMC filters Diagnostics Trip indications Alarm indications Status indications Displaying the trip history Behaviour of the drive when tripped UL Listing Information Common UL information Power dependant UL information AC supply specification Maximum continuous output current Safety label UL listed accessories	214 235 235 247 248 249 249 249 249 250 250

Declaration of Conformity (Size 1 to 5)

Control Techniques Ltd

The Gro

Newtown

Powys

UK

SY16 3BE

BA1201	BA1202	BA1203	BA1204	
BA2201	BA2202	BA2203		
BA3201	BA3202			
BA4201	BA4202	BA4203		
BA5201	BA5202			

BA1401	BA1402	BA1403	BA1404	BA1405	BA1406
BA2401	BA2402	BA2403			
BA3401	BA3402	BA3403			
BA4401	BA4402	BA4403			
BA5401	BA5402				

BA3501	BA3502	BA3503	BA3504	BA3505	BA3506
BA3507					
BA4601	BA4602	BA4603	BA4604	BA4605	BA4606
BA5601	BA5602				

The AC variable speed drive products listed above have been designed and manufactured in accordance with the following European harmonised standards:

EN 61800-5-1	Adjustable speed electrical power drive systems - safety requirements - electrical, thermal and energy
EN 61800-3	Adjustable speed electrical power drive systems. EMC product standard including specific test methods
EN 61000-6-2	Electromagnetic compatibility (EMC). Generic standards. Immunity standard for industrial environments
EN 61000-6-4	Electromagnetic compatibility (EMC). Generic standards. Emission standard for industrial environments

These products comply with the Low Voltage Directive 2006/95/EC, the Electromagnetic Compatibility (EMC) Directive 2004/108/EC and the CE Marking Directive 93/68/EEC.

Executive Vice President, Technology Newtown

Date: 7th September 2007

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters. The drives must be installed only by professional assemblers who are familiar with requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used. Refer to the User Guide. An EMC Data Sheet is also available giving detailed EMC information.

Declaration of Conformity (Size 6)

Control Techniques Ltd

The Gro

Newtown

Powys

UK

SY16 3BE

BA6401	BA6402	
BA6601	BA6602	

The AC variable speed drive products listed above have been designed and manufactured in accordance with the following European harmonised standards:

EN 61800-5-1	Adjustable speed electrical power drive systems - safety requirements - electrical, thermal and energy
EN 61800-3	Adjustable speed electrical power drive systems. EMC product standard including specific test methods
EN 61000-6-2	Electromagnetic compatibility (EMC). Generic standards. Immunity standard for industrial environments

These products comply with the Low Voltage Directive 2006/95/EC, the Electromagnetic Compatibility (EMC) Directive 89/336/EEC and the CE Marking Directive 93/68/EEC.

Executive Vice President, Technology Newtown

Date: 3rd May 2007

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters. The drives must be installed only by professional assemblers who are familiar with requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used. Refer to the User Guide. An EMC Data Sheet is also available giving detailed EMC information.

Product SMARTCARE Advanced **UL** Listina Optimization PC tools Diagnostics Information operation Installation Installation Started parameters the moto parameters Data Information

Safety Information

1.1 Warnings, Cautions and Notes

A Warning contains information which is essential for avoiding a safety hazard.

A Caution contains information which is necessary for avoiding a risk of damage to the product or other equipment.

NOTE

A Note contains information which helps to ensure correct operation of

Electrical safety - general warning 1.2

The voltages used in the drive can cause severe electrical shock and/or burns, and could be lethal. Extreme care is necessary at all times when working with or adjacent to the drive.

Specific warnings are given at the relevant places in this User Guide.

1.3 System design and safety of personnel

The drive is intended as a component for professional incorporation into complete equipment or a system. If installed incorrectly, the drive may present a safety hazard.

The drive uses high voltages and currents, carries a high level of stored electrical energy, and is used to control equipment which can cause

Close attention is required to the electrical installation and the system design to avoid hazards either in normal operation or in the event of equipment malfunction. System design, installation, commissioning/ start-up and maintenance must be carried out by personnel who have the necessary training and experience. They must read this safety information and this User Guide carefully.

The STOP function of the drive do not isolate dangerous voltages from the output of the drive or from any external option unit. The supply must be disconnected by an approved electrical isolation device before gaining access to the electrical connections.

None of the drive functions must be used to ensure safety of personnel, i.e. they must not be used for safety-related functions.

Careful consideration must be given to the functions of the drive which might result in a hazard, either through their intended behaviour or through incorrect operation due to a fault. In any application where a malfunction of the drive or its control system could lead to or allow damage, loss or injury, a risk analysis must be carried out, and where necessary, further measures taken to reduce the risk - for example, an over-speed protection device in case of failure of the speed control, or a fail-safe mechanical brake in case of loss of motor braking.

1.4 **Environmental limits**

Instructions in this User Guide regarding transport, storage, installation and use of the drive must be complied with, including the specified environmental limits. Drives must not be subjected to excessive physical force.

1.5 Compliance with regulations

The installer is responsible for complying with all relevant regulations, such as national wiring regulations, accident prevention regulations and electromagnetic compatibility (EMC) regulations. Particular attention must be given to the cross-sectional areas of conductors, the selection of fuses or other protection, and protective earth (ground) connections.

This User Guide contains instruction for achieving compliance with specific EMC standards.

Within the European Union, all machinery in which this product is used must comply with the following directives:

98/37/EC: Safety of machinery.

89/336/EEC: Electromagnetic Compatibility.

1.6 Motor

Ensure the motor is installed in accordance with the manufacturer's recommendations. Ensure the motor shaft is not exposed.

Standard squirrel cage induction motors are designed for single speed operation. If it is intended to use the capability of the drive to run a motor at speeds above its designed maximum, it is strongly recommended that the manufacturer is consulted first.

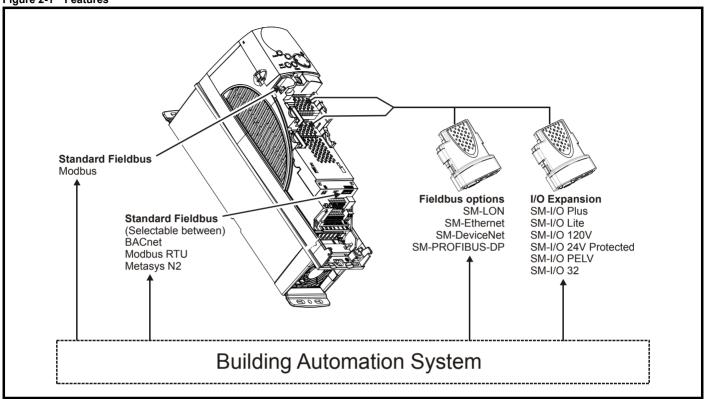
Low speeds may cause the motor to overheat because the cooling fan becomes less effective. The motor should be installed with a protection thermistor. If necessary, an electric forced vent fan should be used.

The values of the motor parameters set in the drive affect the protection of the motor. The default values in the drive should not be relied upon.

It is essential that the correct value is entered in parameter 0.46 motor rated current. This affects the thermal protection of the motor.

1.7 Adjusting parameters

Some parameters have a profound effect on the operation of the drive. They must not be altered without careful consideration of the impact on the controlled system. Measures must be taken to prevent unwanted changes due to error or tampering.


PC tools Optimization Diagnostics operation Information Information Installation Installation parameters the moto narameters Information

2 **Product Information**

2.1 Introduction

The Affinity is a high performance open loop AC drive specifically designed for use in building automation HVAC/R applications. Figure 2-1 below indicates the key product features including built in connectivity to building automation systems. Each drive is equipped with two identical option slots for I/O and communications expansion

Figure 2-1 Features

The Affinity drive can be used as a standalone motor controller or integrated into a building automation system using analog and digital I/O or serial communications. The base drive incorporates a RS-485 serial communications port that is selectable between BACnet, Metasys N2 or Modbus RTU. LonWorks, Ethernet, Profibus and Devicenet connectivity is achieved with the addition of plug-in option modules.

Key features:

Fire Mode

Fire Mode is a configurable override function that is used to alter the operation of the drive based upon external inputs, typically a discrete digital input from a Building Management Fire Protection system (refer to section 11.21.3 Fire mode on page 203)

Fire Mode - important warning.

When Fire Mode is active the motor overload and thermal protection are disabled, as well as a number of drive protection functions. Fire Mode is provided for use only in emergency situations where the safety risk from disabling protection is less than the risk from the drive tripping - typically in smoke extraction operation to permit evacuation of a building. The use of Fire Mode itself causes a risk of fire from overloading of the motor or drive, so it must only be used after careful consideration of the balance of risks.

Care must be taken to prevent inadvertent activation or de-activation of Fire Mode. Fire Mode is indicated by a flashing display text warning "Fire mode active".

Care must be taken to ensure that parameters Pr 1.53 or Pr 1.54 are not inadvertently re-allocated to different inputs or variables. It should be noted that, by default, Pr 1.54 is controlled from digital input 4 and changing Pr 6.04 or Pr 8.24 can re-allocate this digital input to another parameter. These parameters are at access level 2 in order to minimise the risk of inadvertent or unauthorised changes. It is recommended that User Security be applied to further reduce the risk (see section 5.10 Parameter access level and security on page 90). These parameters may also be changed via serial communications so adequate precautions should be taken if this functionality is utilised.

Real time Clock

An internal real time clock is available which is used for the timer functions and trip log

Timer functions

Two timers are available to switch an output on a routine basis

Sleep/Wake Mode

Sleep/wake mode stops and starts the motor during periods of low demand to improve system efficiency

Advanced Process PID

Two PIDs are available which can operate independently or combine to provide more complex functionality

Product Information Safety **UL** Listing Running SMARTCARE Advanced Optimization PC tools Diagnostics Information Installation Installation Started parameters the moto operation parameters Data Information

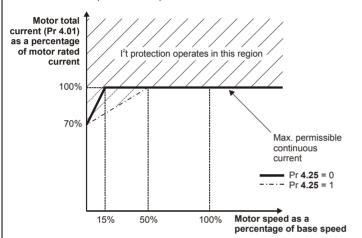
2.2 Drive types

There are two types of Affinity drives available, namely standard and E12/E54. The E12/E54 drive is identified by a three character designation at the end of the model number, E12 (US) or E54 (EUR). The standard drive has no additional characters.

The standard drives are rated to IP20/NEMA1. Drive sizes 1 and 3 conform to UL Type 1 and sizes 4 to 6 are Open Class. If the optional conduit box (refer to section 3.5 Mounting methods on page 27) is installed, then drive sizes 4 to 6 conform to UL Type 1.

The E12/E54 drives have an additional cover installed. They are rated to IP54/NEMA12 and conform to UL Type 12. E12/E54 drive sizes 1 to 3 have an internal fan installed to re-circulate the air. The larger drive sizes have fans installed to the cover to provide forced ventilation using filtered air.

2.3 Ratings


Self ventilated (TENV/TEFC) induction motors require increased protection against overload due to the reduced cooling effect of the fan at low speed. To provide the correct level of protection the l²t software operates at a level which is speed dependent. This is illustrated in the graph below.

The speed at which the low speed protection takes effect can be changed by the setting of Pr 4.25. The protection starts when the motor speed is below 15% of base speed when Pr 4.25 = 0 and below 50% when Pr 4.25 = 1 (default).

Operation of motor I²t protection (It.AC trip)

Motor I²t protection is fixed as shown below and is compatible with:

Self ventilated (TENV/TEFC) induction motors

	Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Ir	nformation	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

For size 1 to 6 standard drives and size 1 to 3 E12/54 drives, the continuous current ratings given are for maximum 40°C (104°F),1000m altitude and 3.0kHz switching. For size 4 to 6 E12/54 drives, the continuous current ratings given are for maximum 35°C (95°F),1000m altitude and 3.0kHz switching. For further information refer to section 12.1.1 Power and current ratings (Derating for switching frequency and temperature) on page 214.

Table 2-1 200V Drive ratings (200V to 240V ±10%)

	Model	Maximum continuous output current	Nominal power at 220V	Motor power at 230V	Peak current
		Α	kW	hp	Α
()	1201	5.2	1.1	1.5	5.7
	1202	6.8	1.5	2.0	7.4
M	1203	9.6	2.2	3.0	10.5
	1204	11	3.0	3.0	12.1
	2201	15.5	4.0	5.0	17.0
- 2	2202	22	5.5	7.5	24.2
	2203	28	7.5	10	30.8
	3201	42	11	15	46
. Mes	3202	54	15	20	59
٠	4201	68	18.5	25	74
	4202	80	22	30	88
• 1	4203	104	30	40	114
	5201	130	37	50	143
÷ [5	5202	154	45	60	169

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Informatio	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

For size 1 to 6 standard drives and size 1 to 3 E12/54 drives, the continuous current ratings given are for maximum 40°C (104°F),1000m altitude and 3.0kHz switching. For size 4 to 6 E12/54 drives, the continuous current ratings given are for maximum 35°C (95°F),1000m altitude and 3.0kHz switching. For further information refer to section 12.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 214.

Table 2-2 400V Drive ratings (380V to 480V ±10%)

	Model	Maximum continuous output current	Nominal power at 400V	Motor power at 460V	Peak current
		Α	kW	hp	Α
	1401	2.8	1.1	1.5	3.0
3	1402	3.8	1.5	2.0	4.1
	1403	5.0	2.2	3.0	5.5
	1404	6.9	3.0	5.0	7.5
4	1405	8.8	4.0	5.0	9.6
	1406	11	5.5	7.5	12.1
<u> </u>	2401	15.3	7.5	10	16.8
2	2402	21	11	15	23
	2403	29	15	20	31
	3401	35	18.5	25	38
3	3402	43	22	30	47
•	3403	56	30	40	61
å	4401	68	37	50	74
°	4402	83	45	60	91
• 4	4403	104	55	75	114
	5401	138	75	100	151
5	5402	168	90	125	184
	6401	205	110	150	225
6	6402	236	132	200	259

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10010	parameters	Data	Diagnoonoo	Information

For size 1 to 6 standard drives and size 1 to 3 E12/54 drives, the continuous current ratings given are for maximum 40°C (104°F),1000m altitude and 3.0kHz switching. For size 4 to 6 E12/54 drives, the continuous current ratings given are for maximum 35°C (95°F),1000m altitude and 3.0kHz switching. For further information refer to section 12.1.1 Power and current ratings (Derating for switching frequency and temperature) on page 214.

Table 2-3 575V Drive ratings (500V to 575V ±10%)

	Model	Maximum continuous output current	Nominal power at 575V	Motor power at 575V	Peak current
		Α	kW	hp	Α
	3501	5.4	3.0	3.0	5.9
	3502	6.1	4.0	5.0	6.7
	3503	8.4	5.5	7.5	9.2
3	3504	11	7.5	10	12.1
	3505	16	11	15	17.6
	3506	22	15	20	24.2
	3507	27	18.5	25	29.7
â	4603	36	22	30	39.6
ŏ	4604	43	30	40	47.3
	4605	52	37	50	57.2
•	4606	62	45	60	68
0	5601	84	55	75	92
0 5	5602	99	75	100	108
	6601	125	90	125	137
60	6602	144	110	150	158

The power ratings above for model size 4 and larger are for the 690V drives when used on a 500V to 575V supply.

	Model	Maximum continuous output current	Nominal power at 690V	Motor power at 690V	Peak current
		Α	kW	hp	Α
	4601	22	18.5	25	24.2
.	4602	27	22	30	29.7
0	4603	36	30	40	39.6
	4604	43	37	50	47.3
M	4605	52	45	60	57.2
	4606	62	55	75	68.2
	5601	84	75	100	92
5	5602	99	90	125	108
	6601	125	110	150	137
	6602	144	132	175	158

1	0 ()				0	- ·			OMARTOARR			-		111 11 11
	Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information
			otanation		Otal tou	parametere			ороганоп		parametere	2010		

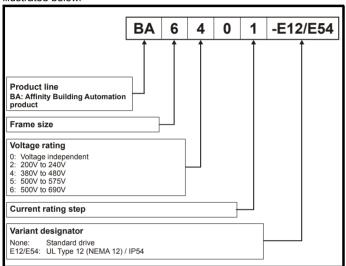
2.3.1 Typical short term overload limits

The maximum percentage overload limit changes depending on the selected motor. Variations in motor rated current, motor power factor and motor leakage inductance all result in changes in the maximum possible overload. The exact value for a specific motor can be calculated using the equations detailed in Menu 4 in the Advanced User Guide.

Typical values are shown in the table below for RFC mode (RFC) and open loop (OL) modes:

Table 2-5 Typical overload limits for size 1 to 6

Operating mode	RFC mode from cold	RFC mode from 100%	Open loop from cold	Open loop from 100%
Overload with motor rated current = drive rated current	110% for 165s	110% for 9s	110% for 165s	110% for 9s


Generally the drive rated current is higher than the matching motor rated current allowing a higher level of overload than the default setting as illustrated by the example of a typical 4 pole motor.

The time allowed in the overload region is proportionally reduced at very low output frequency.

The maximum overload level which can be attained is independent of the speed.

2.4 Model number

The way in which the model numbers for the Affinity range are formed is illustrated below

2.5 Operating modes

The Affinity is designed to operate in any of the following modes:

1. Open loop mode

Open loop vector mode Fixed V/F mode (V/Hz) Quadratic V/F mode (V/Hz)

2. RFC mode

Open loop mode 2.5.1

The drive applies power to the motor at frequencies varied by the user. The motor speed is a result of the output frequency of the drive and slip due to the mechanical load. The drive can improve the speed control of the motor by applying slip compensation. The performance at low speed depends on whether V/F mode or open loop vector mode is selected.

For further details refer to section 8.1.1 Open loop motor control on page 112.

Open loop vector mode

The voltage applied to the motor is directly proportional to the frequency except at low speed where the drive uses motor parameters to apply the correct voltage to keep the flux constant under varying load conditions.

Typically 100% torque is available down to 1Hz for a 50Hz motor.

Fixed V/F mode

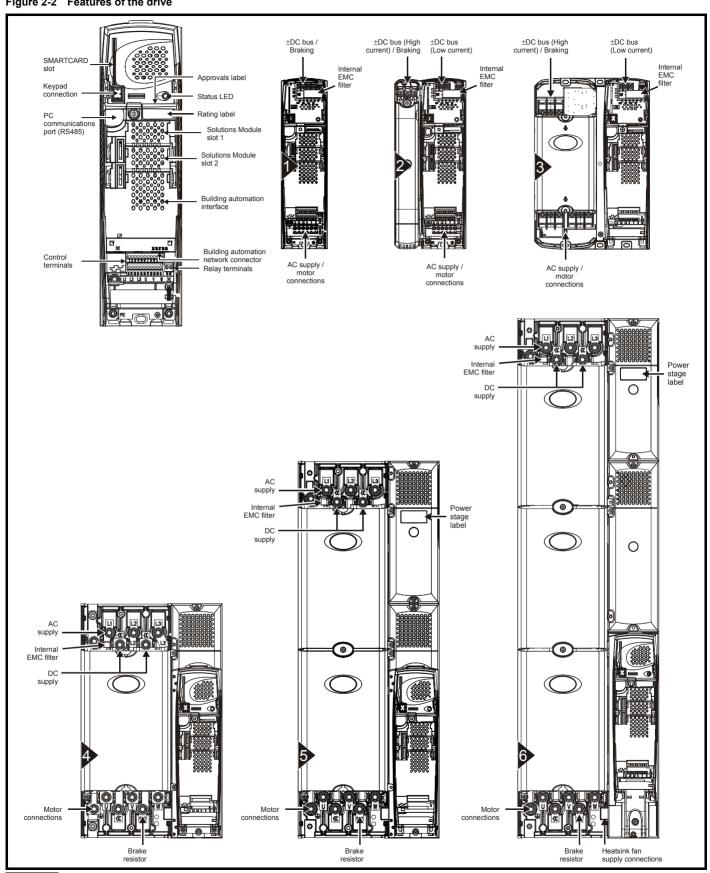
The voltage applied to the motor is directly proportional to the frequency except at low speed where a voltage boost is provided which is set by the user. This mode can be used for multi-motor applications.

Typically 100% torque is available down to 4Hz for a 50Hz motor.

Quadratic V/F mode

The voltage applied to the motor is directly proportional to the square of the frequency except at low speed where a voltage boost is provided which is set by the user. This mode can be used for running fan or pump applications with quadratic load characteristics or for multi-motor applications. This mode is not suitable for applications requiring a high starting torque.

2.5.2 **RFC** mode

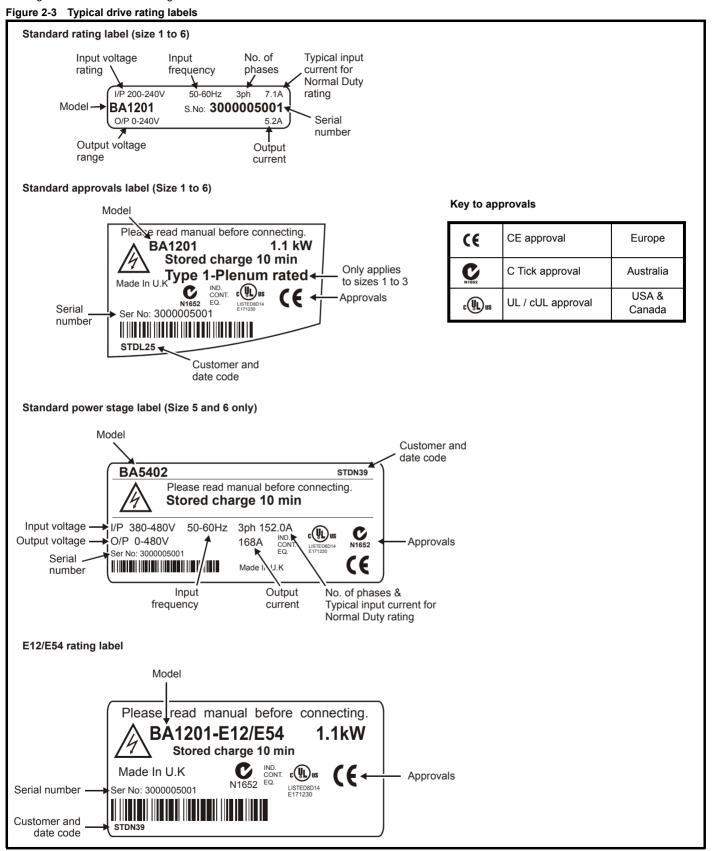

Rotor flux control provides closed loop control without the need for position feedback by using current, voltages and key motor parameters to estimate the motor speed. It can eliminate instability traditionally associated with open loop control such as operating large motors with light loads at low frequencies.

For further details, refer to section 8.1.2 RFC mode on page 114.

Product Information Getting Started SMARTCARD **UL** Listing Optimization PC tools Diagnostics Installation Information Installation the motor Data Information parameters operation parameters

2.6 **Drive features**

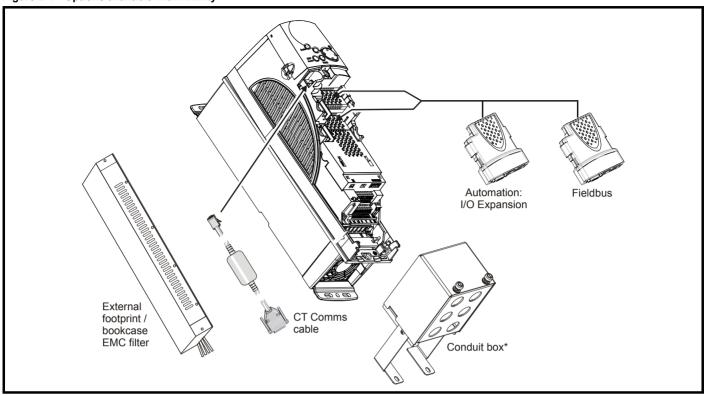
Figure 2-2 Features of the drive



The size 6 drive requires a 24V supply for the heatsink fan.

Safety **UL** Listing Advanced Optimization PC tools Diagnostics Information Installation Installation Started parameters the moto operation parameters Data Information

2.7 Nameplate description


See Figure 2-2 for location of rating labels.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10010	parameters	Data	Diagnoonoo	Information

2.8 **Options**

Figure 2-4 Options available with Affinity

^{*} For sizes 1 and 2 there is only a bottom conduit box available. For sizes 3 to 6 there is a top and bottom conduit box available.

All Solutions Modules are color-coded in order to make identification easy. The following table shows the color-code key and gives further details on their function.

Table 2-6 Solutions Module identification

Type	Solutions Module	Color	Name	Further Details
		Yellow	SM-I/O Plus	Extended I/O interface Increases the I/O capability by adding the following to the existing I/O in the drive: Digital inputs x 3 Analog output (voltage) x 1 Relay x 2 Analog inputs (voltage) x 2
-		Yellow	SM-I/O 32	Extended I/O interface Increase the I/O capability by adding the following to the existing I/O in the drive: High speed digital I/O x 32 +24V output
Automation		Dark Yellow	SM-I/O Lite	Additional I/O 1 x Analog input (± 10V bi-polar or current modes) 1 x Analog output (0-10V or current modes) 3 x Digital input and 1 x Relay
(I/O Expansion)		Turquoise	SM-I/O PELV	Isolated I/O to NAMUR NE37 specifications For chemical industry applications 1 x Analog input (current modes) 2 x Analog outputs (current modes) 4 x Digital input / outputs, 1 x Digital input, 2 x Relay outputs
		Olive	SM-I/O 120V	Additional I/O conforming to IEC 61131-2 120Vac 6 digital inputs and 2 relay outputs rated for 120Vac operation
-		Cobalt Blue	SM-I/O 24V Protected	Additional I/O with overvoltage protection up to 48V 2 x Analog outputs (current modes) 4 x Digital input / outputs, 3 x Digital inputs, 2 x Relay outputs

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Informatio	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

Table 2-6 Solutions Module identification

Type	Solutions Module	Color	Name	Further Details
		Purple	SM-PROFIBUS-DP	Profibus option PROFIBUS DP adapter for communications with the drive
Fieldbus		Medium Grey	SM-DeviceNet	DeviceNet option Devicenet adapter for communications with the drive
		Beige	SM-Ethernet	Ethernet option 10 base-T / 100 base-T; Supports web pages, SMTP mail and multiple protocols: DHCP IP addressing; Standard RJ45 connection
		Pale Green	SM-LON	LonWorks option LonWorks adapter for communications with the drive

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC 10015	parameters	Data	Diagnostics	Information

2.9 Items supplied with the drive

The drive is supplied with a BA Keypad a printed manual, a SMARTCARD, a safety information booklet, the Certificate of Quality, an accessory kit box including the items shown in Table 2-7, and a CD ROM containing all related product documentation and software tools.

Description	Size 1	Size 2	Size 3	Size 4	Size 5	Size 6
Control connectors			WALLEY OF THE PARTY OF THE PART			
Relay connector						
Grounding bracket						
Through panel mounting gasket*						
HVAC/R communication connector						
Through panel mounting bracket	5			Ø	16/6/61	1
Surface mounting brackets					le le les	
E12/E54 surface mounting brackets				S		
Top surface mounting brackets*						
Nylon washers*	<i>ОТ</i> м6	<i>‱</i> м6	<i>©</i> м6		M8 M6	
Sealing clips*						
Fixing screws					M8 x20	
Grounding clamp						
Ground cable bridge						
DC terminal cover grommets*	COLOR	COOCO	666			
Ferrite ring						
Supply and motor connector						
Fan supply connector						(c c c c c c c c c c c c c c c c c c c
IP54 gasket*						
IP54 insert*						
BA Keypad						

^{*}Not included in the E12/E54 kit box.

Safety Information Installation Safety Information Installation Instal

3 Mechanical Installation

This chapter describes how to use all mechanical details to install the drive.

The standard drive is rated as IP20/UL Type 1 for size 1 to 3 and IP20/open class for size 4 to 6. If the optional conduit box is installed, then size 4 to 6 are rated as UL Type 1. (The conduit box is an additional accessory for all sizes of the standard drive and is required for conduit connection to the drive)

The standard drive is intended to be installed as appropriate for the country where the equipment is used e.g. inside an additional enclosure, plenum or on a plant room wall.

The E12/E54 has additional covers installed and is IP54/UL Type 12 rated. It is intended to be installed on a plant room wall and requires no additional enclosure.

The UL Type 1 and UL Type 12 drives are also plenum rated and are therefore suitable for Plenum mounting applications.

Key features of this chapter include:

- · Planning the installation
- · Terminal cover removal
- · Conduit and Gland connection
- · Solutions Module installation
- · Surface mounting standard drive
- · Through-hole mounting standard drive
- E12/E54 mounting
- Through panel mounting standard drive in an IP54/UL Type 12 enclosure
- · Enclosure sizing and layout
- Terminal location and torque settings

3.1 Safety information

Follow the instructions

The mechanical and electrical installation instructions must be adhered to. Any questions or doubt should be referred to the supplier of the equipment. It is the responsibility of the owner or user to ensure that the installation of the drive and any external option unit, and the way in which they are operated and maintained, comply with the requirements of the Health and Safety at Work Act in the United Kingdom or applicable legislation and regulations and codes of practice in the country in which the equipment is used.

Competence of the installer

The drive must be installed by professional assemblers who are familiar with the requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used.

Many of the drives in this product range weigh in excess of 15kg (33lb). Use appropriate safeguards when lifting these models

A full list of drive weights can be found in section 12.1.18 *Weights* on page 228

3.2 Planning the installation

The following considerations must be made when planning the installation:

3.2.1 Access

Access must be restricted to authorized personnel only. Safety regulations which apply at the place of use must be complied with.

3.2.2 Environmental protection

The standard drive must be protected from:

- moisture, including dripping water or spraying water and condensation. An anti-condensation heater may be required, which must be switched off when the drive is running.
- contamination with electrically conductive material
- contamination with any form of dust which may restrict the fan, or impair airflow over various components
- temperature beyond the specified operating and storage ranges
- corrosive gasses

The E12/E54 variant is protected from airborne dust, splashing water and non-corrosive liquids.

3.2.3 Cooling

If mounting the drive in an enclosure the heat produced must be removed without its specified operating temperature being exceeded. Note that a sealed enclosure gives much reduced cooling compared with a ventilated one, and may need to be larger and/or use internal air circulating fans.

For further information, refer to section 3.6.2 *Enclosure sizing* on page 45.

The E12/E54 drive has an additional fan installed internally to assist cooling by circulating air between the outer cover and the drive or filtering air through external vents (size 4 to 6).

3.2.4 Electrical safety

The installation must be safe under normal and fault conditions. Electrical installation instructions are given in Chapter 4 *Electrical Installation on page 60*.

3.2.5 Fire protection

The drive enclosure is not classified as a fire enclosure. A separate fire enclosure must be provided.

3.2.6 Electromagnetic compatibility

Variable speed drives are powerful electronic circuits which can cause electromagnetic interference if not installed correctly with careful attention to the layout of the wiring.

Some simple routine precautions can prevent disturbance to typical industrial control equipment.

If it is necessary to meet strict emission limits, or if it is known that electromagnetically sensitive equipment is located nearby, then full precautions must be observed. In-built into the drive, is an internal EMC filter, which reduces emissions under certain conditions. If these conditions are exceeded, then the use of an external EMC filter may be required at the drive inputs, which must be located very close to the drives. Space must be made available for the filters and allowance made for carefully segregated wiring. Both levels of precautions are covered in section 4.11 EMC (Electromagnetic compatibility) on page 72.

3.2.7 Hazardous areas

The drive must not be located in a classified hazardous area unless it is installed in an approved enclosure and the installation is certified.

3.3 Terminal cover removal

Isolation device

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

UL Listing Safety Optimization PC tools Diagnostics Information Information Installation Installation Started parameter the moto operation parameters Data Information

Stored charge

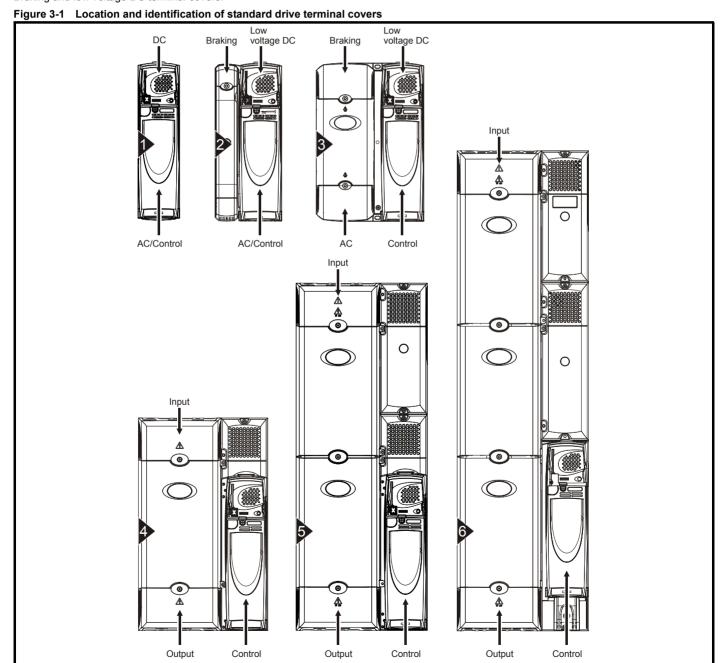
The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult Control Techniques or their authorized distributor.

3.3.1 Removing the terminal covers Standard drive

Size 1 is fitted with two terminal covers: AC/Control and DC terminal covers.

Size 2 is fitted with three terminal covers: AC/Control, High current DC / Braking and low voltage DC terminal covers.


Size 3 is fitted with four terminal covers: Control, High current DC / Braking, low voltage DC and AC terminal covers.

Size 4, 5 and 6 are fitted with three terminal covers: Control, input and output terminal covers.

In order to provide access to the mounting holes when a size 1, 2 or 3 drive is through-panel mounted, the control terminal cover must be removed. For size 3 the high current DC / Braking and AC terminal covers must also be removed. Once the drive has been mounted, the terminal covers can be replaced.

Size 1 to 4 are only fitted with 1 outer cover which is held on by 6 sealing screws. By removing this cover access can be gained to all power and control terminals as per the standard drive. No further covers require

Size 5 and 6 are fitted with 2 removable covers, top and bottom, for access to input, output and control terminals.

21 Affinity User Guide Issue Number: 3

Safety Information Product Information Running the motor **UL** Listing PC tools Optimization Diagnostics Installation operation parameters Information Installation parameters

To remove a terminal cover, undo the screw and lift the terminal cover off as shown. The control terminal cover must be removed first before the DC (size 1) / low voltage DC (sizes 2 and 3) terminal cover can be removed.

When replacing the terminal covers the screws should be tightened with a maximum torque of 1 N m (0.7 lb ft).

Figure 3-2 Removing the standard drive size 1 terminal covers

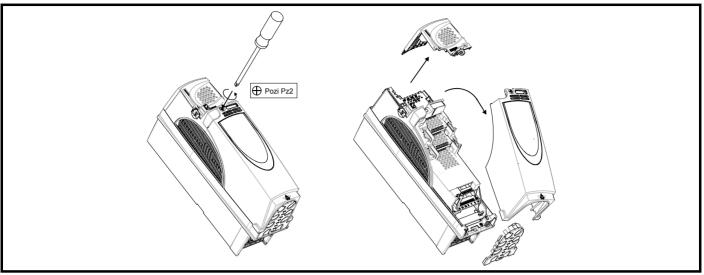


Figure 3-3 Removing the standard drive size 2 terminal covers

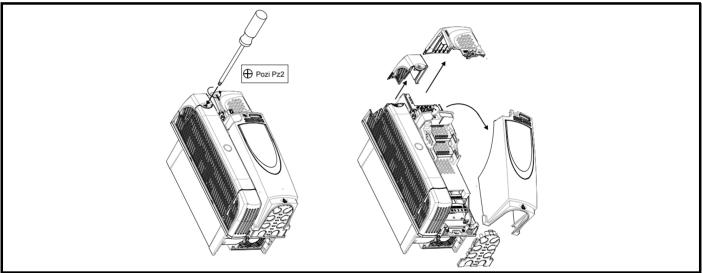
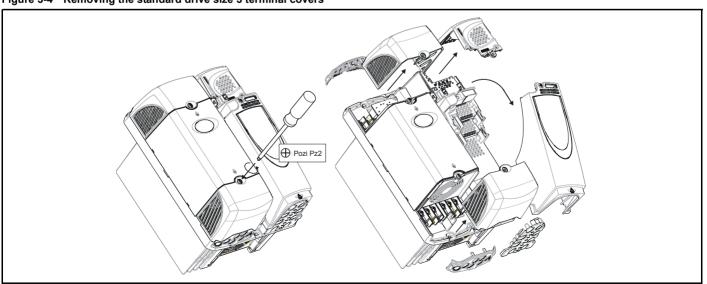
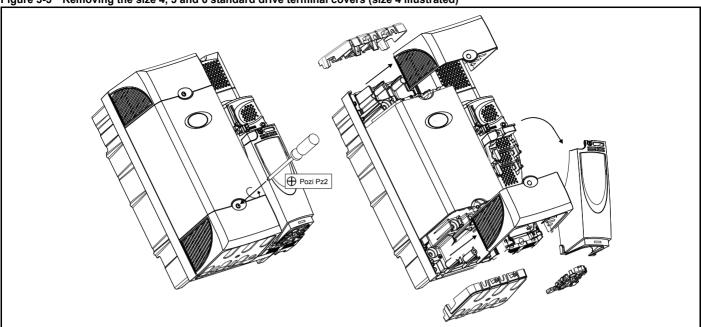
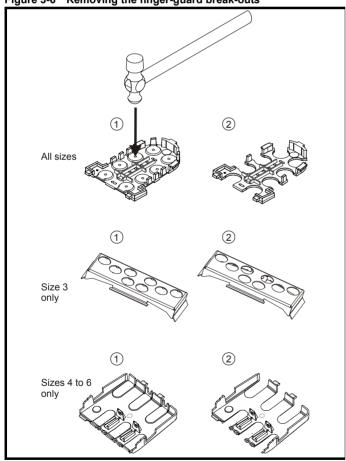




Figure 3-4 Removing the standard drive size 3 terminal covers


22 Affinity User Guide Issue Number: 3

Removing the size 4, 5 and 6 standard drive terminal covers (size 4 illustrated)

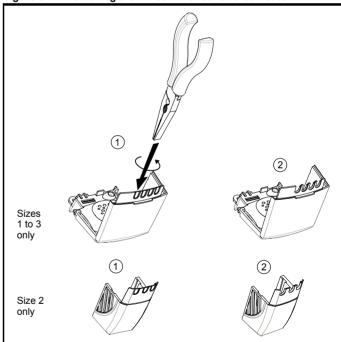
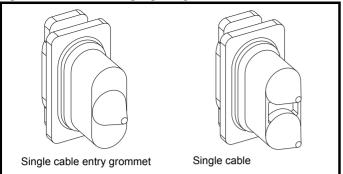

3.3.2 Removing the finger-guard and DC terminal cover break-outs

Figure 3-6 Removing the finger-guard break-outs

Place finger-guard on a flat solid surface and hit relevant break-outs with hammer as shown (1). Continue until all required break-outs are removed (2). Remove any flash / sharp edges once the break-outs are removed.

Figure 3-7 Removing the DC terminal cover break-outs


Grasp the DC terminal cover break-outs with pliers as shown (1) and twist to remove. Continue until all required break-outs are removed (2).

Remove any flash / sharp edges once the break-outs are removed. Use the DC terminal cover grommets supplied in the accessory box (Table 2-7 on page 19) to maintain the seal at the top of the drive.

Grommets are available for the size 4 to 6 finger-guards. Two versions are available allowing for either single or double cable entries. These are not required if the optional conduit box is installed.

Safety | Product | Information | Installation | Ins

Figure 3-8 Size 4 to 6 finger-guard grommets

The grommets are available as a kit of four grommets under the following part numbers:

9500-0074 Kit of four single entry grommets 9500-0075 Kit of four double entry grommets

3.3.3 Conduit connection boxes

Conduit connection boxes are available as an option. Figure 3-9 demonstrates a conduit connection box installed on a size 4 standard drive.

For further information, refer to section 3.5 *Mounting methods* on page 27.

Figure 3-9 Size 4 standard drive with conduit connection box installed

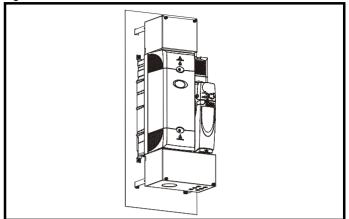
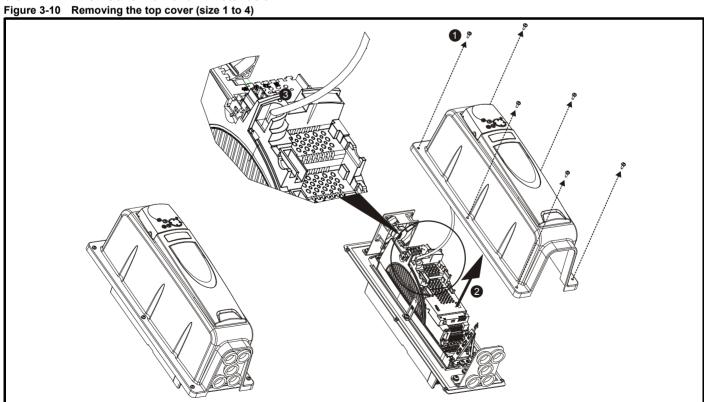
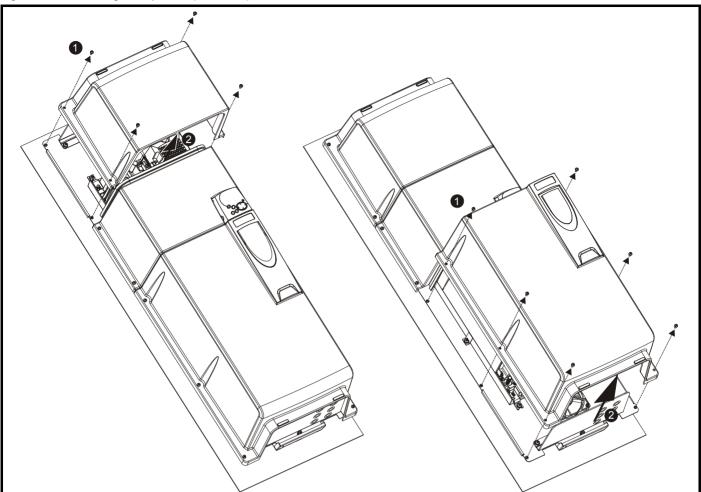



Table 3-1 Conduit box part numbers

Frame size	Top conduit box	Bottom conduit box
1		6500-0008
2		6500-0011
3	6500-0033*	6500-0014
4	6500-0017	6500-0018
5	6500-0023	6500-0024
6	6500-0027	6500-0028

^{*}For DC or brake connections only.


3.3.4 E12/E54 cover removal / installation

- 1. Undo 6 x M5 screws
- 2. Remove cover as shown
- 3. Disconnect the BA Keypad connector from the RJ 45 serial port
- 4. Reverse the above procedure to replace the cover

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	DC tools	PC tools Advanced parameters	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor		operation	FC 10015		Data		Information

Figure 3-11 Removing the top cover (size 5 to 6)

- Undo M5 screws 1.
- Remove cover as shown

E12/E54 size 3 to 6 gland plate drilling

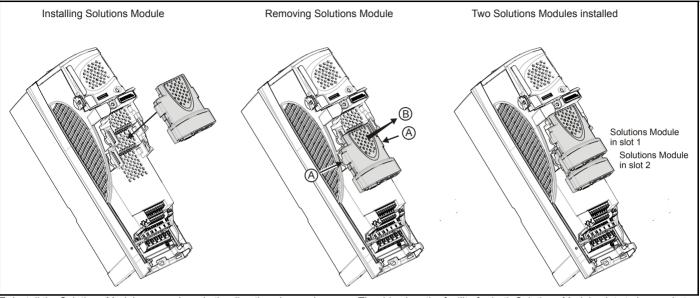
For the size 3 to 6 E12/E54 drives, custom holes need to be drilled accordingly for the following reasons:

- To route power and motor cables
- The connection of metal conduit or IP54 cable glands. (If being used in a Type 12 or IP54 environment the correctly rated glands should be used).

Sizes 4 to 6 have 2 gland plates, top and bottom.

Note that the pre-prepared holes in the plate are for control cables only.

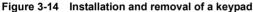
Figure 3-12 Drilling the size 3 to 6 E12/E54 gland plate

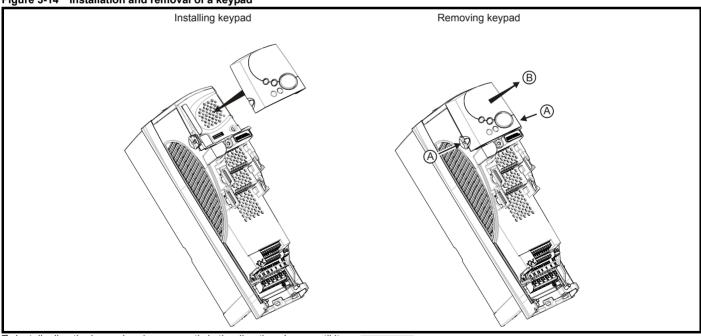

Optimization PC tools Diagnostics Information Information Installation Installation operation parameters Information

3.4 Solutions Module / keypad installation / removal

Power down the drive before installing / removing the Solutions Module. Failure to do so may result in damage to the product.

Figure 3-13 Installation and removal of a Solutions Module




To install the Solutions Module, press down in the direction shown above until it clicks into place.

To remove the Solutions Module, press inwards at the points shown (A) and pull in the direction shown (B).

The drive has the facility for both Solutions Module slots to be used at the same time, as illustrated.

It is recommended that Solutions Module slot 2 is used if only one module is installed.

To install, align the keypad and press gently in the direction shown until it clicks into position.

To remove, while pressing the tabs inwards (A), gently lift the keypad in the direction indicated (B).

NOTE

The keypad can be installed / removed while the drive is powered up and running a motor, providing that the drive is not operating in hand, off or keypad mode.

The keypad for the E12/E54 drive is installed to the top cover and connected to the drive via a cable.

26 Affinity User Guide www.controltechniques.com

Safety Product Electrical SMARTCARD **UL** Listing Optimization PC tools Diagnostics Information Installation Started Information Installation parameters the motor operation parameters Data Information

3.5 Mounting methods

The standard drive can be either surface or through-panel mounted using the appropriate brackets.

The E12/E54 drive can only be surface mounted.

The following drawings show the dimensions of the drive and mounting holes for each method to allow a back plate to be prepared.

Many of the drives in this product range weigh in excess of 15kg (33lb). Use appropriate safeguards when lifting these

A full list of drive weights can be found in section 12.1.18 Weights on page 228

If the drive has been used at high load levels for a period of time, the heatsink can reach temperatures in excess of 70°C (158°F). Human contact with the heatsink should be prevented.

3.5.1 Standard drive surface mounting

The standard drives are rated to IP20/NEMA1. Drive sizes 1 to 3 conform to UL Type 1 and sizes 4 to 6 are Open Class. If the optional conduit box is installed, then drive sizes 4 to 6 conform to UL Type 1. Refer to Table 3-1 on page 24 for conduit box part numbers.

Figure 3-15 Surface mounting the standard size 1 drive with conduit connection box installed

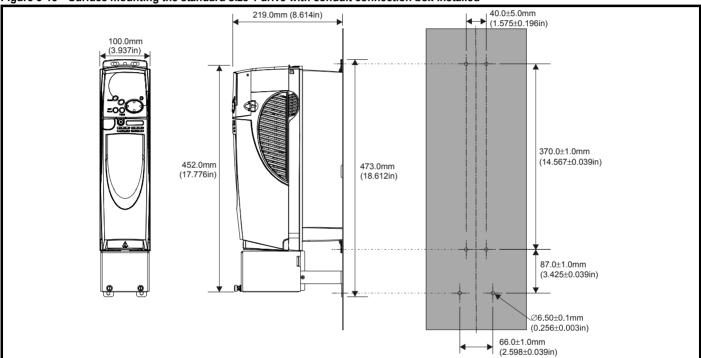
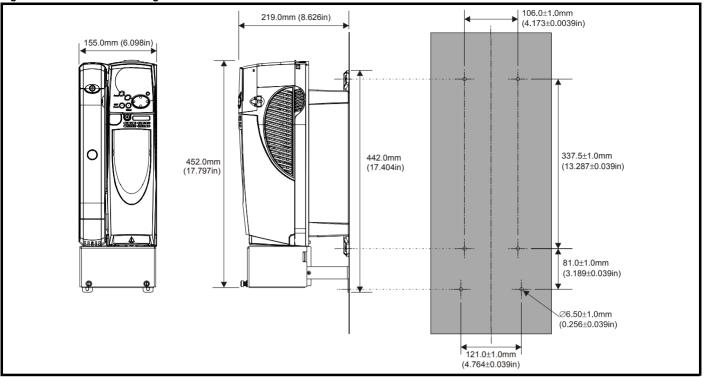
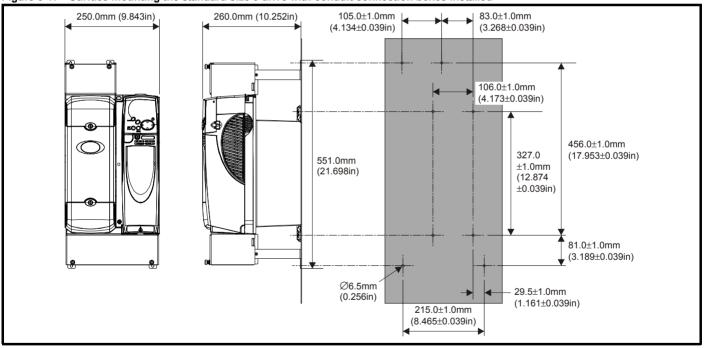
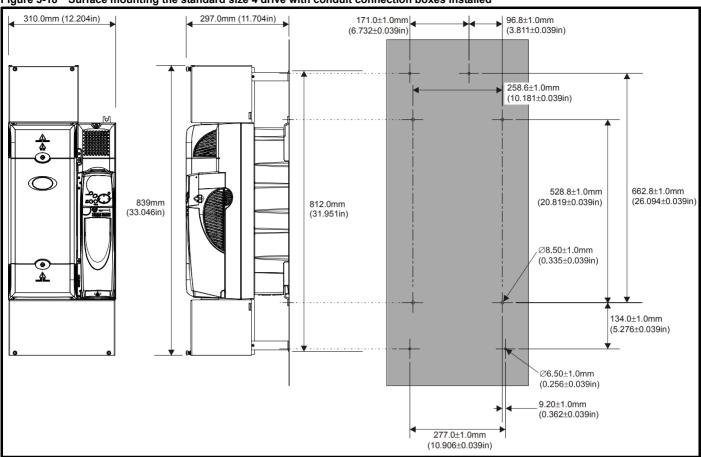


Figure 3-16 Surface mounting the standard size 2 drive with conduit connection box installed


Figure 3-17 Surface mounting the standard size 3 drive with conduit connection boxes installed

On size 3 Affinity standard drives, the top conduit box is required for DC or brake connections only.

Mechanical Installation Getting Started Electrical SMARTCARD Advanced **UL** Listing PC tools Diagnostics Optimization Information Information Installation parameters the motor operation Data Information parameters

Figure 3-18 Surface mounting the standard size 4 drive with conduit connection boxes installed

Mechanical Installation Getting Started Technical Data Electrical Advanced **UL** Listing PC tools Diagnostics Optimization Information Information Installation the motor Information parameters operation parameters

Figure 3-19 Surface mounting the standard size 5 drive with conduit connection boxes installed

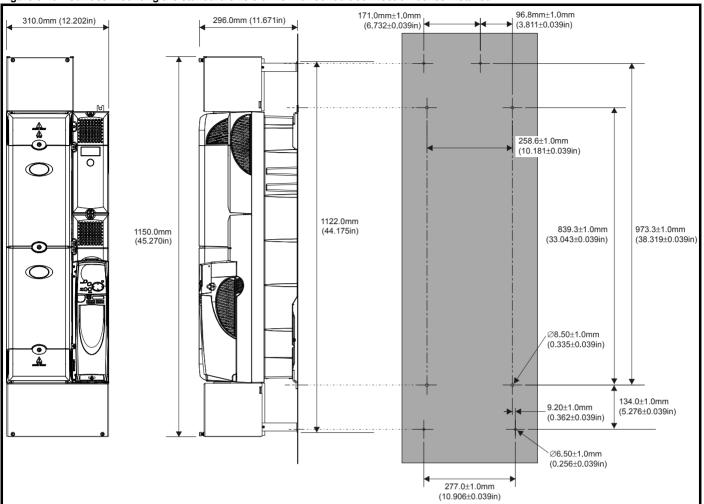
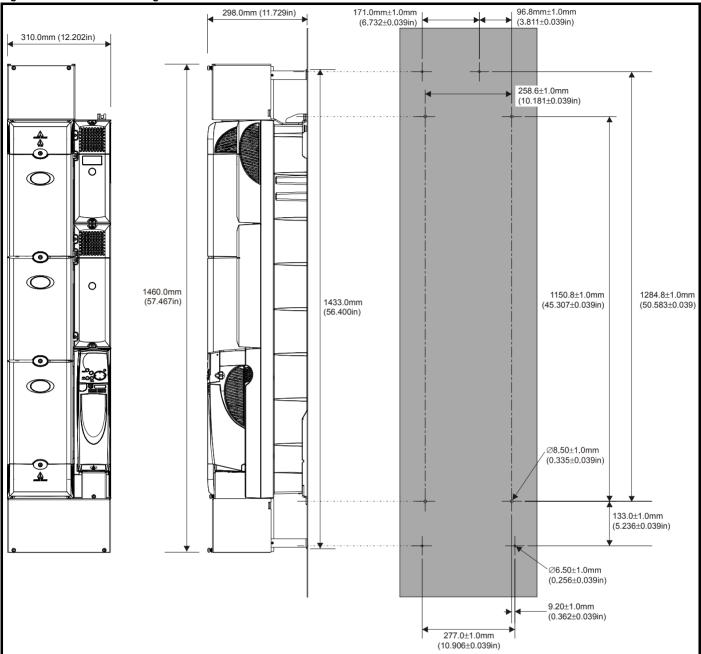
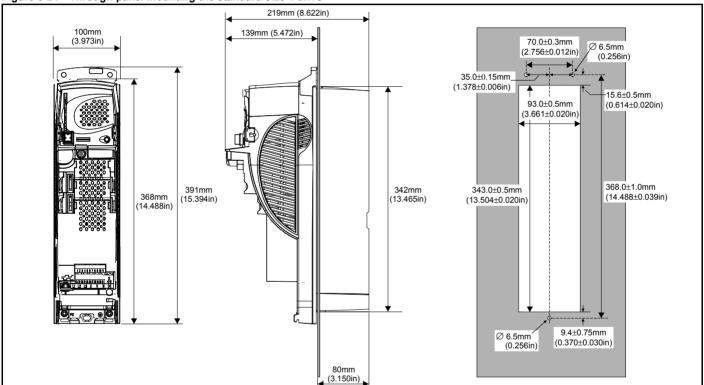



Figure 3-20 Surface mounting the standard size 6 drive with conduit connection boxes installed

Safety Electrical SMARTCARD **UL** Listing PC tools Optimization Diagnostics Information Information Installation Installation Started parameters the motor operation parameters Data Information

3.5.2 Standard drive through-panel mounting


When the standard drive is through-panel mounted, the main terminal cover(s) must be removed in order to provide access to the mounting holes. Once the drive has been mounted, the terminal cover(s) can be replaced.

The conduit connection box cannot be used when through-panel mounting the standard drive'

NOTE

In order to achieve IP54 rating (UL Type 12 / NEMA 12) for throughpanel mounting, an IP54 insert must be installed (size 1 and 2) and the heatsink fan should be replaced with an IP54 rated fan (sizes 1 to 4). Additionally, the gasket provided should be installed between the drive and the backplate to ensure a good seal for the enclosure. If the heatsink mounted braking resistor is to be used with the drive throughpanel mounted, refer to the specific Braking resistor installation sheet. For further information refer to section 3.8 Enclosing standard drive for high environmental protection on page 47.

Figure 3-21 Through-panel mounting the standard size 1 drive

32 Affinity User Guide

Getting Started Electrical SMARTCARD Advanced **UL** Listing PC tools Optimization Diagnostics Information Information Installation Data Information Installation parameters the motor operation parameters

Figure 3-22 Through-panel mounting the standard size 2 drive

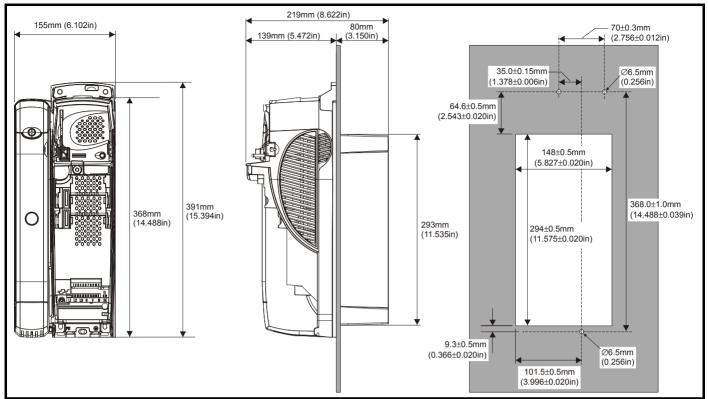
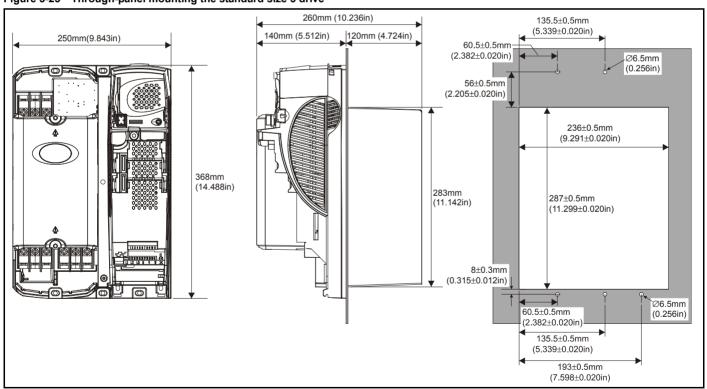
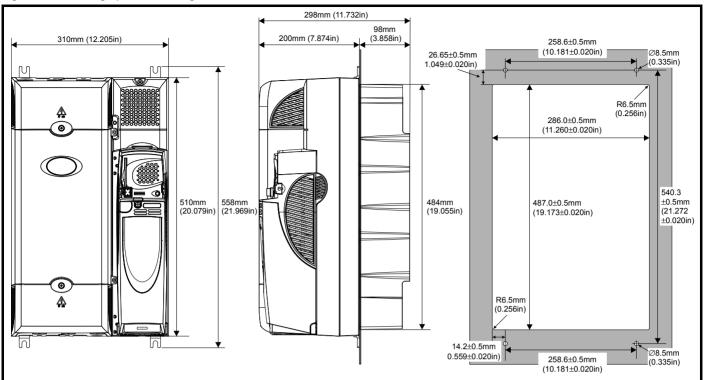
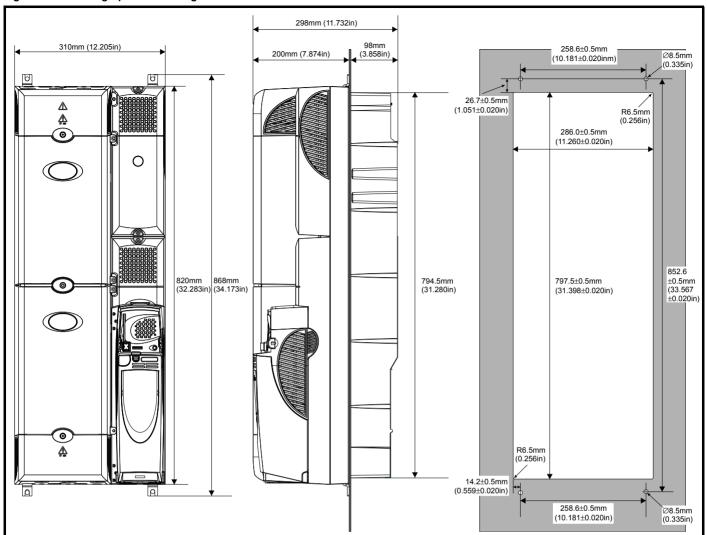




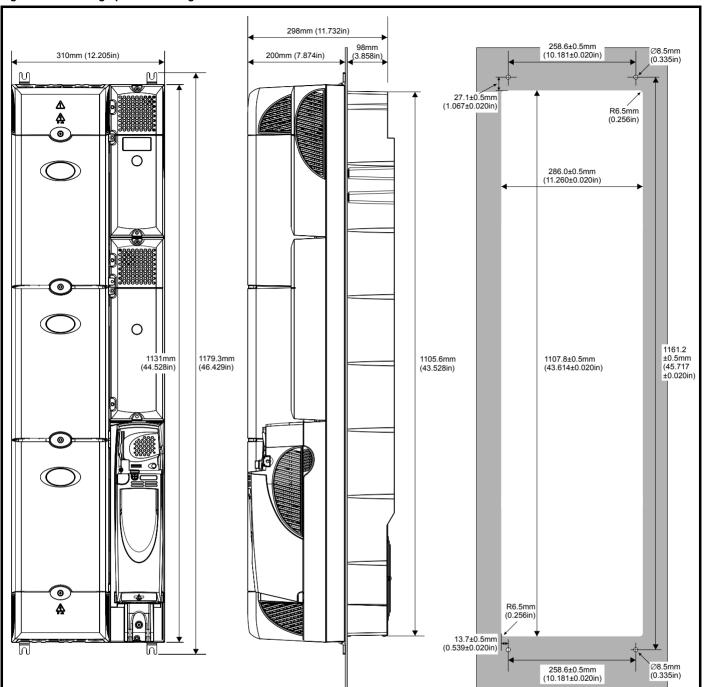
Figure 3-23 Through-panel mounting the standard size 3 drive

Getting Started Running the motor Technical Data Safety Product Electrical Basic SMARTCARD Advanced **UL** Listing Optimization PC tools Diagnostics Information Information Installation Installation Information parameters operation parameters


Figure 3-24 Through-panel mounting the standard size 4 drive

When a size 4 is through-panel mounted, the grounding link bracket must be folded upwards. This is required to provide a grounding point for the grounding bracket. See section 4.11.1 Grounding hardware on page 73 for more information.

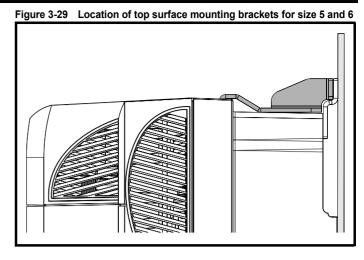
Mechanical Installation Getting Started Safety Product Electrical Basic SMARTCARD Advanced **UL** Listing Optimization PC tools Diagnostics Information Information Installation the motor parameters Data Information parameters operation


Figure 3-25 Through-panel mounting the standard size 5 drive

When a size 5 is through-panel mounted, the grounding link bracket must be folded upwards. This is required to provide a grounding point for the grounding bracket. See section 4.11.1 *Grounding hardware* on page 73 for more information.

Product Information Mechanical Installation Getting Started Running the motor Technical Data Safety Electrical Basic SMARTCARD Advanced **UL** Listing Optimization PC tools Diagnostics Information Installation parameters Information parameters operation

Figure 3-26 Through-panel mounting the standard size 6 drive

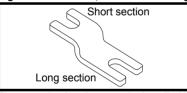


Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the motor operation parameters Data Information

3.5.3 Standard drive surface and through-panel mounting brackets

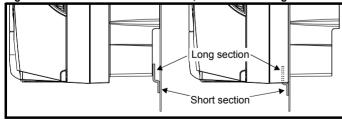
Table 3-2 Mounting brackets (Standard)

Model size	Surface	Through-panel	Hole size
1	x2	x1	
2	x2	x1	6.5mm (0.256in)
3	co for for the x2		
4		[≽] x4	
		[≫] x4	8.5mm (0.335in)
5 & 6	x2		


To avoid damaging the through-panel mounting bracket when throughpanel mounting a size 1 or size 2, the through-panel mounting bracket should be used to mount the top of the drive to the back plate before the bottom of the drive is mounted to the back plate. The tightening torque should be 4 N m (2.9 lb ft).

3.5.4 Installation of the mounting bracket on size 4, 5 and 6

Size 4, 5 and 6 use the same mounting brackets for surface and through-panel mounting.


The mounting bracket has a long section and a short section.

Size 4, 5 and 6 mounting bracket Figure 3-27

The mounting bracket must be installed in the correct orientation with the long section inserted into or attached to the drive and the short section is attached to the back plate. Figure 3-28 shows the orientation of the mounting bracket when the drive is surface and through-panel mounted.

Figure 3-28 Orientation of the size 4, 5 and 6 mounting bracket

When through-panel mounted, the mounting brackets on the left hand side of the drive can be secured using the screws already located there. On the right hand side, the mounting brackets are just inserted into the slots in the chasis of the drive; no fixing screws are present here.

Size 5 and 6 also require two top mounting brackets when the drive is surface mounted. The two brackets should be installed to the top of the drive as shown in Figure 3-29.

The maximum torque setting for the screws into the drive chassis is 10 N m (7.4 lb. ft).

37 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

3.5.5 E12/E54 drive surface mounting

Table 3-3 states the mounting clearances required when mounting the E12/54 drive. The drive spacing stated for sizes 4 to 6 are recommended to allow easy access to the maintainable dust filters. When installing the drives, access to the filters should not be blocked by cabling or conduit. For details on how to access the filters please refer to section 3.11.1 *E12/E54 filter change* on page 58.

Table 3-3 E12/E54 mounting clearances

Size	Clearances required at top and bottom of drive mm	Clearances required at side of drive mm
1 to 3	100	
4	150	20
5 and 6	220	

Figure 3-30 Size 1 E12/E54 drive surface mounting

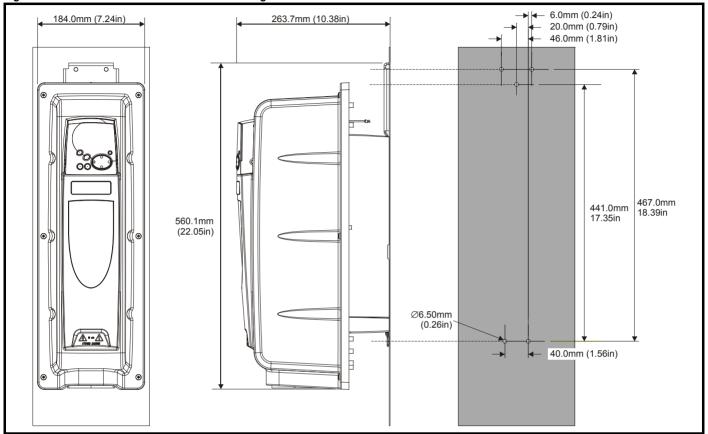
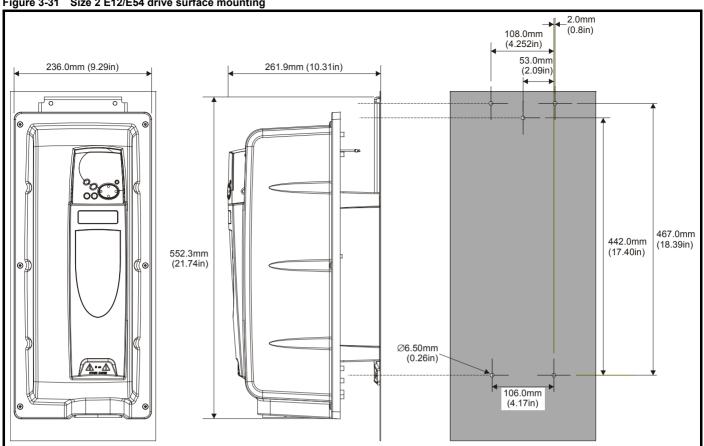
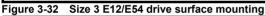
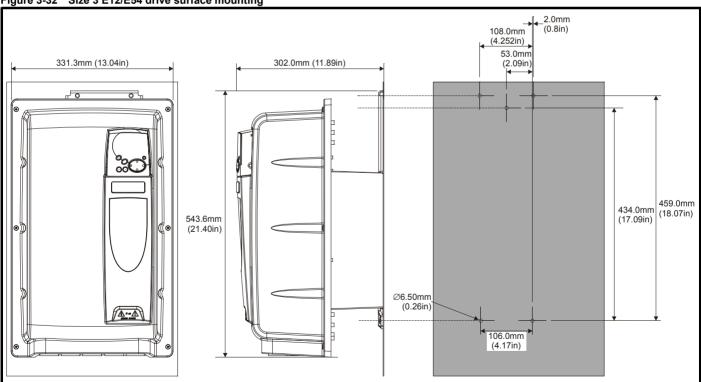





Figure 3-31 Size 2 E12/E54 drive surface mounting

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor SMARTCARD operation Advanced parameters Technical Data UL Listing Information Optimization PC tools Diagnostics

Figure 3-33 Size 4 E12/E54 drive surface mounting

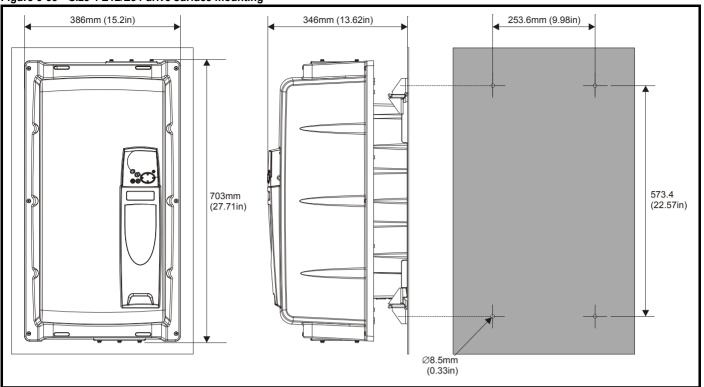
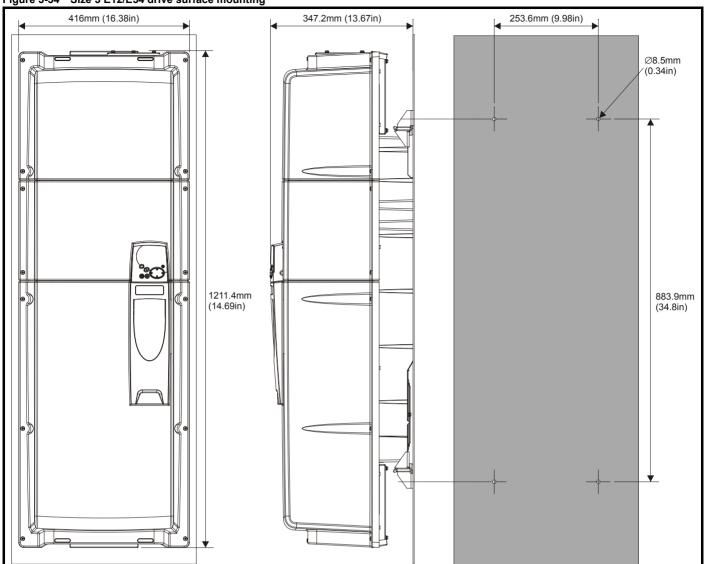



Figure 3-34 Size 5 E12/E54 drive surface mounting

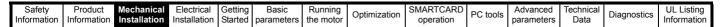
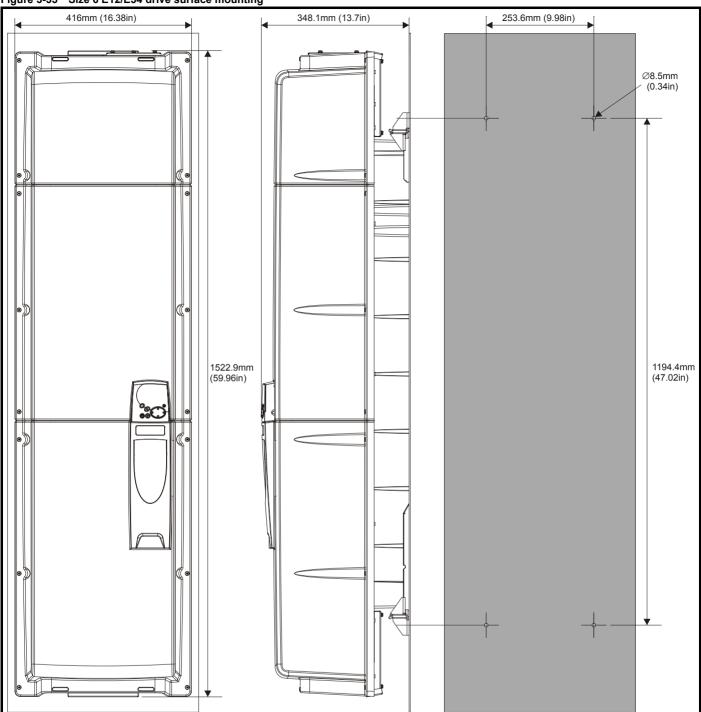



Figure 3-35 Size 6 E12/E54 drive surface mounting

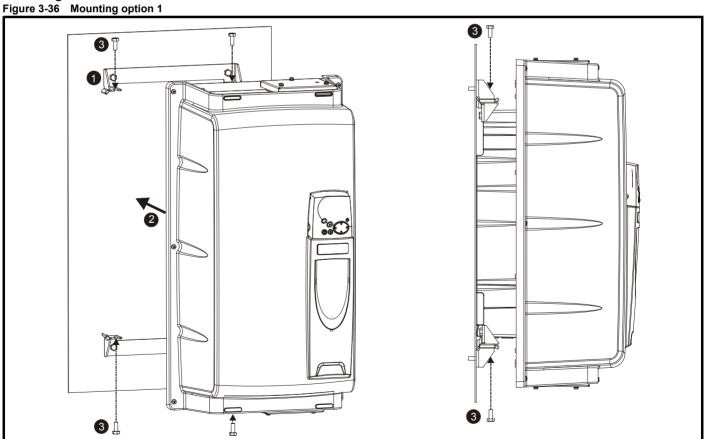
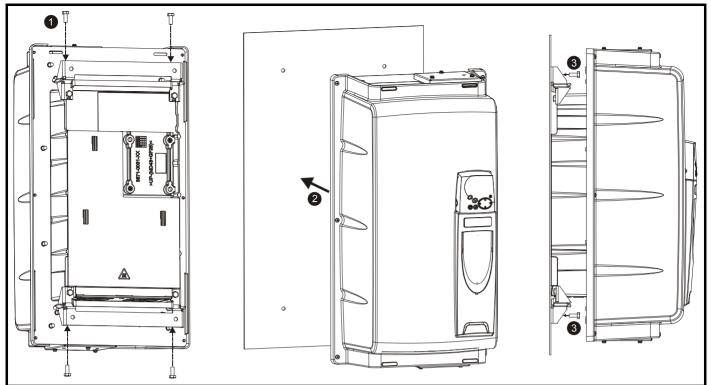

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC 10015	parameters	Data	Diagnostics	Information

Table 3-4 E12/E54 mounting brackets

Model size	E12/E54 surface n	nounting brackets		Hole size
1	x1	0 • 0	x2	M6
2	x1	Colo lo lo	x2	M6
3	x1	Colo lo lo	x2	M6
4, 5, 6		- Cal	x2	M8

Only two of the brackets illustrated in Table 3-4 are required when surface mounting the E12/E54 drive. It is recommended as standard that one of each type is used as illustrated in Figure 3-30, Figure 3-31, Figure 3-32. However, if the E12/E54 drive is to be footprint mounted to an external EMC filter, both the smaller surface mounting brackets should

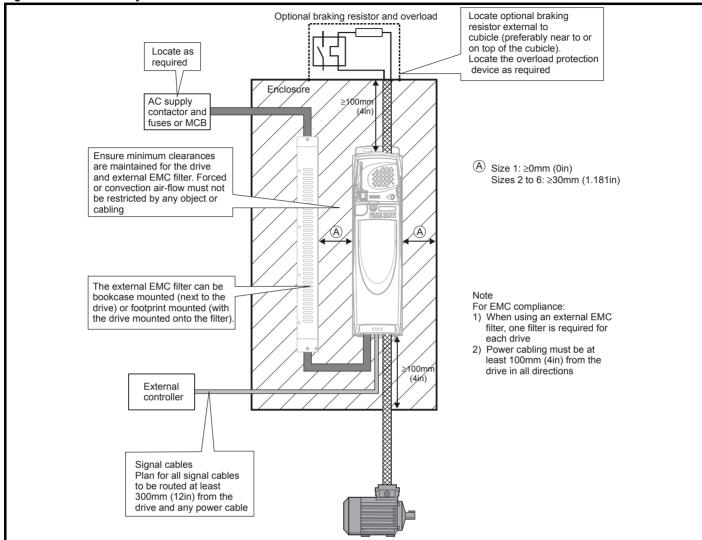

Mounting the size 4 to 6 E12/54 drive

- Bolt the two mounting brackets to the enclosure wall.
- 2. Manoeuvre the drive so it fits between the two mounting brackets
- 3. Use the M8 bolts provided to secure the drive to the mounting brackets (10 N m [7.4 lb ft]).

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Running the motor SMARTCARD operation Advanced parameters Technical Data UL Listing Information Basic Optimization PC tools Diagnostics parameters

Figure 3-37 **Mounting option 2**

- Use the M8 bolts provided to secure the mounting brackets to the drive (10 N m [7.4 lb ft]).
- Once appropriate holes have been drilled into the back plate, line up the drive accordingly.
- Bolt the drive to the backplate through the mounting brackets already secured to the drive.


Safety **UL** Listina PC tools Optimization Diagnostics operation Information Information Installation Installation Started parameters the moto parameters Information

3.6 **Enclosure for standard drives**

3.6.1 **Enclosure layout**

Please observe the clearances in the diagram below taking into account any appropriate notes for other devices / auxiliary equipment when planning the installation.

Figure 3-38 Enclosure layout

3.6.2 **Enclosure sizing**

- Add the dissipation figures from section 12.1.2 Power dissipation on page 220 for each drive that is to be installed in the enclosure.
- If an external EMC filter is to be used with each drive, add the dissipation figures from section 12.2.1 EMC filter ratings on page 233 for each external EMC filter that is to be installed in the enclosure
- If the braking resistor is to be mounted inside the enclosure, add the average power figures from for each braking resistor that is to be installed in the enclosure.
- Calculate the total heat dissipation (in Watts) of any other equipment to be installed in the enclosure.
- Add the heat dissipation figures obtained above. This gives a figure in Watts for the total heat that will be dissipated inside the enclosure.

Calculating the size of a sealed enclosure

The enclosure transfers internally generated heat into the surrounding air by natural convection (or external forced air flow); the greater the surface area of the enclosure walls, the better is the dissipation capability. Only the surfaces of the enclosure that are unobstructed (not in contact with a wall or floor) can dissipate heat.

Calculate the minimum required unobstructed surface area A_e for the enclosure from:

$$\mathbf{A_e} = \frac{\mathbf{P}}{\mathbf{k}(\mathbf{T_{int}} - \mathbf{T_{ext}})}$$

Where:

 $\mathbf{A}_{\mathbf{e}}$ Unobstructed surface area in m^2 (1 m^2 = 10.9 ft^2)

T ext Maximum expected temperature in °C outside the enclosure

Maximum permissible temperature in °C inside the Tint enclosure

Power in Watts dissipated by all heat sources in the Р enclosure

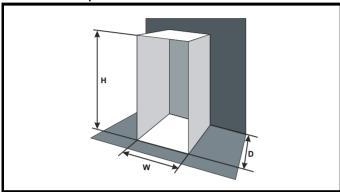
Heat transmission coefficient of the enclosure material in W/m²/°C

Example

To calculate the size of an enclosure for the following:

- Two BA1406 models operating at the Normal Duty rating
- Each drive to operate at 6kHz PWM switching frequency
- Schaffner 16 A (4200-6119) external EMC filter for each drive
- Braking resistors are to be mounted outside the enclosure
- Maximum ambient temperature inside the enclosure: 40°C
- Maximum ambient temperature outside the enclosure: 30°C

Dissipation of each drive: 187 W (see section 12-4 Losses @ 40°C (104°F) ambient on page 220)


Dissipation of each external EMC filter: 9.2 W (max) (see section 12.2.1 *EMC filter ratings* on page 233)

Total dissipation: 2 x (187 + 9.2) = 392.4 W

The enclosure is to be made from painted 2 mm (0.079 in) sheet steel having a heat transmission coefficient of $5.5 \, \text{W/m}^2/^{\circ}\text{C}$. Only the top, front, and two sides of the enclosure are free to dissipate heat.

The value of 5.5 W/m²/°C can generally be used with a sheet steel enclosure (exact values can be obtained by the supplier of the material). If in any doubt, allow for a greater margin in the temperature rise.

Figure 3-39 Enclosure having front, sides and top panels free to dissipate heat

Insert the following values:

T_{int} 40°C T_{ext} 30°C k 5.5 P 392.4 W

The minimum required heat conducting area is then:

$$\textbf{A}_{\text{e}} \, = \, \frac{392.4}{5.5(40-30)}$$

= 7.135
$$m^2$$
 (77.8 ft^2) (1 m^2 = 10.9 ft^2)

Estimate two of the enclosure dimensions - the height (H) and depth (D), for instance. Calculate the width (W) from:

$$W \,=\, \frac{A_e - 2HD}{H + D}$$

Inserting $\mathbf{H} = 2m$ and $\mathbf{D} = 0.6m$, obtain the minimum width:

$$W = \frac{7.135 - (2 \times 2 \times 0.6)}{2 + 0.6}$$

If the enclosure is too large for the space available, it can be made smaller only by attending to one or all of the following:

- Using a lower PWM switching frequency to reduce the dissipation in the drives
- Reducing the ambient temperature outside the enclosure, and/or applying forced-air cooling to the outside of the enclosure
- Reducing the number of drives in the enclosure
- Removing other heat-generating equipment

Calculating the air-flow in a ventilated enclosure

The dimensions of the enclosure are required only for accommodating the equipment. The equipment is cooled by the forced air flow.

Calculate the minimum required volume of ventilating air from:

$$V = \frac{3kP}{T_{int} - T_{ext}}$$

Where:

V Air-flow in m³ per hour (1 m³/hr = 0.59 ft³/min) T_{ext} Maximum expected temperature in °C *outside* the

T_{int} Maximum permissible temperature in °C *inside* the enclosure

P Power in Watts dissipated by all heat sources in the enclosure

k Ratio of $\frac{P_o}{P_I}$

Where

Po is the air pressure at sea level

P_I is the air pressure at the installation

Typically use a factor of 1.2 to 1.3, to allow also for pressure-drops in dirty air-filters.

Example

To calculate the size of an enclosure for the following:

- Three BA1403 models operating at the Normal Duty rating
- Each drive to operate at 6kHz PWM switching frequency
- Schaffner 10A (4200-6118) external EMC filter for each drive
- Braking resistors are to be mounted outside the enclosure
- Maximum ambient temperature inside the enclosure: 40°C

Maximum ambient temperature outside the enclosure: 30°C

Dissipation of each drive: 101 W

Dissipation of each external EMC filter: 6.9 W (max)

Total dissipation: 3 x (101 + 6.9) = 323.7 W

Insert the following values:

T_{int} 40°C T_{ext} 30°C k 1.3 P 323.7 W

Then:

$$V = \frac{3 \times 1.3 \times 323.7}{40 - 30}$$

= 126.2 m³/hr (74.5 ft³/min) $(1 \text{ m}^3/\text{ hr} = 0.59 \text{ ft}^3/\text{min})$

3.7 Enclosure design and drive ambient temperature

Drive derating is required for operation in high ambient temperatures

Totally enclosing or through panel mounting the drive in either a sealed cabinet (no airflow) or in a well ventilated cabinet makes a significant difference on drive cooling.

The chosen method affects the ambient temperature value (T_{rate}) which should be used for any necessary derating to ensure sufficient cooling for the whole of the drive.

The ambient temperature for the four different combinations is defined below:

- Totally enclosed with no air flow (<2 m/s) over the drive T_{rate} = T_{int} + 5°C
- 2. Totally enclosed with air flow (>2 m/s) over the drive $T_{rate} = T_{int}$
- Through panel mounted with no airflow (<2 m/s) over the drive T_{rate} = the greater of T_{ext} +5°C, or T_{int}
- 4. Through panel mounted with air flow (>2 m/s) over the drive T_{rate} = the greater of T_{ext} or T_{int}

Where

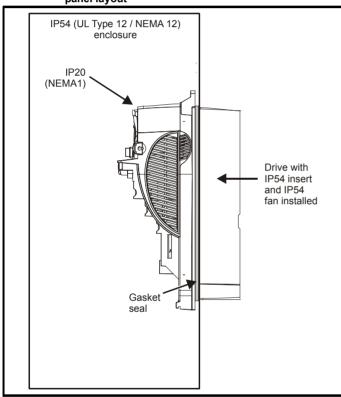
 T_{ext} = Temperature outside the cabinet

T_{int} = Temperature inside the cabinet

T_{rate} = Temperature used to select current rating from tables in Chapter 12 *Technical Data* .

Safety Product Information Installation Inst

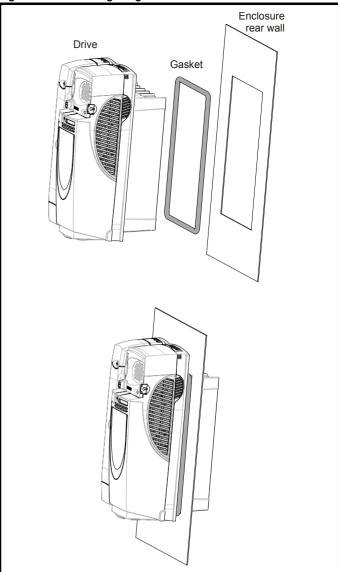
3.8 Enclosing standard drive for high environmental protection


An explanation of environmental protection rating is provided in section 12.1.9 *Environmental Protection Rating* on page 226.

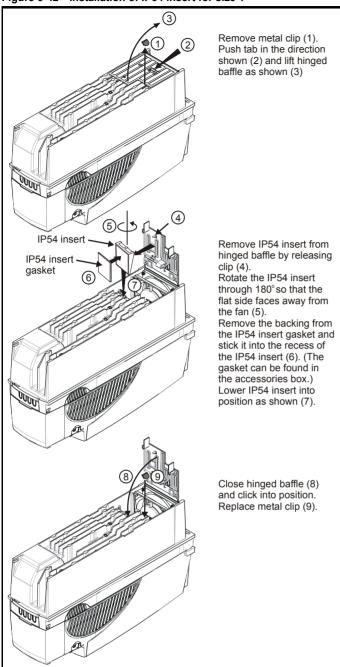
The standard drive is rated to IP20 pollution degree 2 (dry, non-conductive contamination only) (UL Type 1 / NEMA 1). However, it is possible to configure the drive to achieve IP54 rating (UL Type 12 / NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required for size 1 and 2).

This allows the front of the drive, along with various switchgear, to be housed in an IP54 (UL Type 12 / NEMA 12) enclosure with the heatsink protruding through the panel to the external environment. Thus, the majority of the heat generated by the drive is dissipated outside the enclosure maintaining a reduced temperature inside the enclosure. This also relies on a good seal being made between the heatsink and the rear of the enclosure using the gaskets provided.

For Type 12 the drive must be mounted on a flat surface of a Type 12 enclosure.


Figure 3-40 Example of IP54 (UL Type 12 / NEMA 12) throughpanel layout

The main gasket should be installed as shown in Figure 3-41. Any screws / bolts that are used for mounting should be installed with the nylon washers provided in the kit box to maintain a seal around the screw hole. See Figure 3-44.


In order to achieve the high IP rating at the rear of the heatsink with size 1 and 2, it is necessary to seal a heatsink vent by installing the IP54 insert as shown in Figure 3-42 and Figure 3-43.

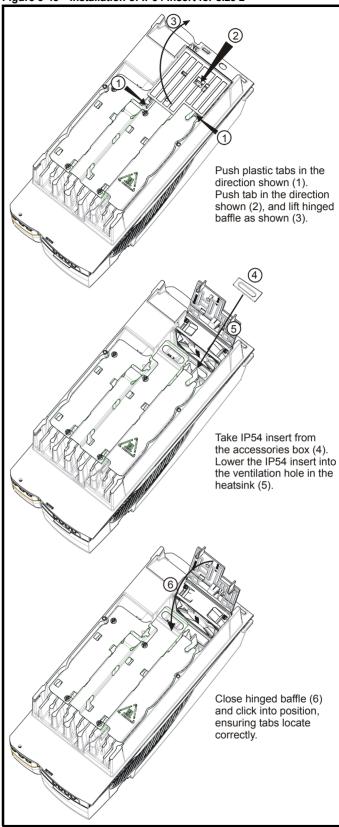

UL Listing Optimization PC tools Diagnostics Information Started the motor Information Information Installation Installation parameters operation parameters Data

Figure 3-42 Installation of IP54 insert for size 1

In order to remove the IP54 insert, repeat steps (1), (2) and (3), reverse steps (7), (6), (5) and (4) and repeat steps (8) and (9).

Figure 3-43 Installation of IP54 insert for size 2

In order to remove the IP54 insert, repeat steps (1) (2) and (3), reverse steps (5) and (4) and repeat step (6).

48 Affinity User Guide Issue Number: 3 Safety Information Information Installation Installation

For sizes 4 to 6 it may be necessary to improve the rigidity of the through panel mounting surface due to the larger distance between the top and bottom mounting brackets and the need to maintain compression on the gasket.

When the drive is mounted, if the gap between the drive flange (which the gasket rests on) and the rear wall of the enclosure is \geq 6mm at any point around the drive then the following methods can be used to compress the gasket further:

- 1. Use a thicker panel for the mounting wall of the enclosure through which the drive is mounted.
- Use an internal backplate to pull the rear wall of the enclosure up to the drive gasket. See Figure 3-44 for details. (Nylon washers are supplied in the standard drive kit for sealing off any nut and bolt fixings that exit through the rear wall of the panel).
- If an internal backplate is not available a separate clamp can be used to simulate option 2. See Figure 3-45. 4 off sealing clamps are supplied in the drive kit box.

Figure 3-44 Option 2 for achieving IP54 (UL type 12 / NEMA 12) through-panel mounting

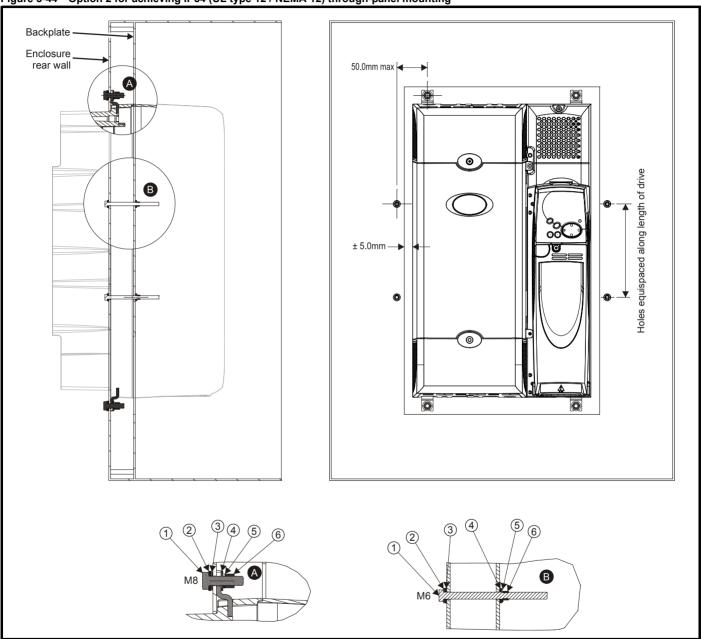


Table 3-5 Description of fixings

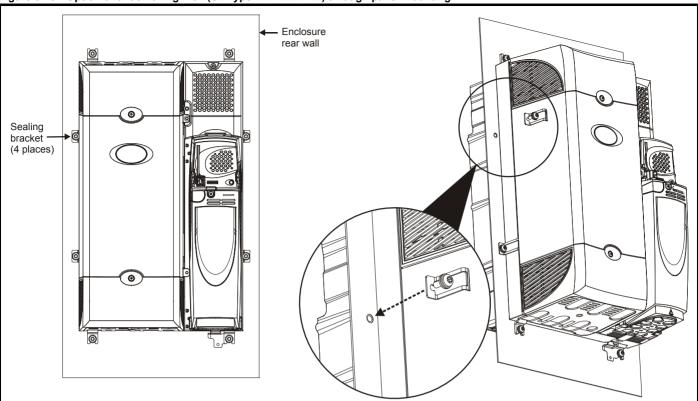

Item	Description
1	Bolt
2	Flat washer
3	Nylon washer (from kitbox)
4	Flat washer
5	Spring washer
6	Nut

Table 3-6 Quantity of nylon washers supplied with the drive

Size	Quantity of M8 (A)	Quantity of M6 (B)
1	0	3
2	0	3
3	0	4
4	4	4
5	4	4
6	4	4

UL Listing PC tools Optimization Diagnostics Information Information Installation Started Installation parameters the motor operation parameters Data Information

Figure 3-45 Option 3 for achieving IP54 (UL Type 12 / NEMA 12) through panel mounting

For increased fan lifetime in a dirty environment the heatsink fan must be replaced with an IP54 rated fan. Contact the supplier of the drive for details. If the standard fan is used in a dirty/dusty environment, reduced fan lifetime will result. Regular cleaning of the fan and heatsink is recommended in this environment. The heatsink fan installed in sizes 5 and 6 are IP54 rated as standard.

The guidelines in Table 3-7 should be followed.

Table 3-7 Environment considerations

Environment	IP54 Insert	Fan	Comments
Clean	Not installed	Standard	
Dry, dusty (non- conductive)	Installed	Standard	Regular cleaning recommended. Fan lifetime may be reduced.
Dry, dusty (conductive)	Installed	Standard / IP54	Regular cleaning recommended. Fan lifetime may be reduced.
IP54 compliance	Installed	IP54	Regular cleaning recommended.

A current derating must be applied to the size 1 and 2 if the IP54 insert and/or IP54 rated fan are installed. Derating information is provided in section 12.1.1 Power and current ratings (Derating for switching frequency and temperature) on page 214.

Failure to do so may result in nuisance tripping.

NOTE

When designing an IP54 (NEMA 12) enclosure (Figure 3-40), consideration should be made to the dissipation from the front of the drive.

Table 3-8 Power losses from the front of the drive when throughpanel mounted

Frame size	Power loss
1	≤50W
2	≤75W
3	≤100W
4	≤204W
5	≤347W
6	≤480W

	Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
In	formation	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC 10015	parameters	Data	Diagnostics	Information

3.9 External EMC filter for standard drives

In order to provide our customers with a degree of flexibility, external EMC filters have been sourced from two manufacturers: Schaffner & Epcos. Filter details for each drive rating are provided in the tables below. Both the Schaffner and Epcos filters meet the same specifications.

Table 3-9 Drive EMC filter details (size 1 to 6)

Drive	Scha	affner	Epo	cos
Drive	CT part no.	Weight	CT part no.	Weight
BA1201 to BA1202	4200-6118	1.4 kg (2.1 lb)	4200-6121	2.1 kg (4.6 lb)
SP1203 to SP1204	4200-6119	1.4 kg (3.1 lb)	4200-6120	2.1 kg (4.0 lb)
BA1401 to BA1404	4200-6118	1.4 kg (3.1 lb)	4200-6121	2.1 kg (4.6 lb)
BA1405 to BA1406	4200-6119	1.4 kg (3.1 lb)	4200-6120	2.1 kg (4.6 lb)
BA2201 to BA2203	4200-6210	2.0 kg (4.4 lb)	4200-6211	3.3 kg (7.3 lb)
BA2401 to BA2403	4200-6210	2.0 kg (4.4 lb)	4200-6211	3.3 kg (7.3 lb)
BA3201 to BA3202	4200-6307	3.5 kg (7.7 lb)	4200-6306	5.1 kg (11.2 lb)
BA4201 to BA4203	4200-6406	4.0 kg (8.8 lb)	4200-6405	7.8 kg (17.2 lb)
BA3401 to BA3403	4200-6305	2 E kg (7 7 lb)	4200-6306	F 1 kg (11 2 lb)
BA3501 to BA3507	4200-6309	3.5 kg (7.7 lb)	4200-6308	5.1 kg (11.2 lb)
BA4401 to BA4403	4200-6406	4.0 kg (8.8 lb)	4200-6405	7.8 kg (17.2 lb)
BA4601 to BA4606	4200-6408	3.8 kg (8.4 lb)	4200-6407	8.0 kg (17.6 lb)
BA5401 to BA5402	4200-6503	6.8 kg (15.0 lb)	4200-6501	12.0 kg (26.5 lb)
BA5601 to BA5602	4200-6504	4.4 kg (9.7 lb)	4200-6502	10.0 kg (22.0 lb)
BA6401 to BA6402	4200-6603	5 25 kg (11 6 lb)	4200-6601	9.6 kg (10.0 lb)
BA6601 to BA6602	4200-6604	5.25 kg (11.6 lb)	4200-6602	8.6 kg (19.0 lb)

The external EMC filters for sizes 1 to 3 can be footprint or bookcase mounted, see Figure 3-46 and Figure 3-47. The external EMC filters for sizes 4 to 6 are designed to be mounted above the drive, as shown in Figure 3-48.

Mount the external EMC filter following the guidelines in section 4.11.5 Compliance with generic emission standards on page 77.

Figure 3-46 Footprint mounting the EMC filter

Figure 3-47 Bookcase mounting the EMC filter

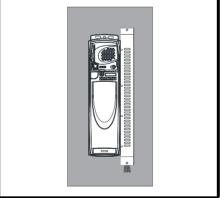
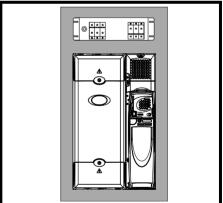
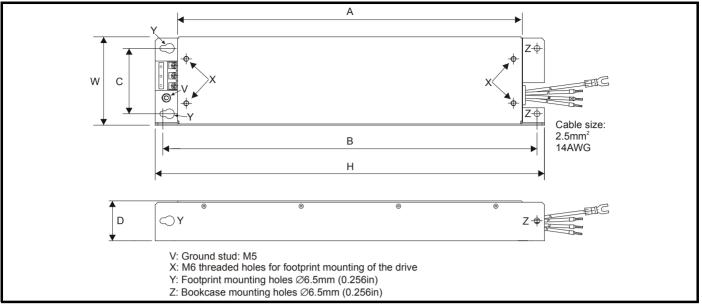
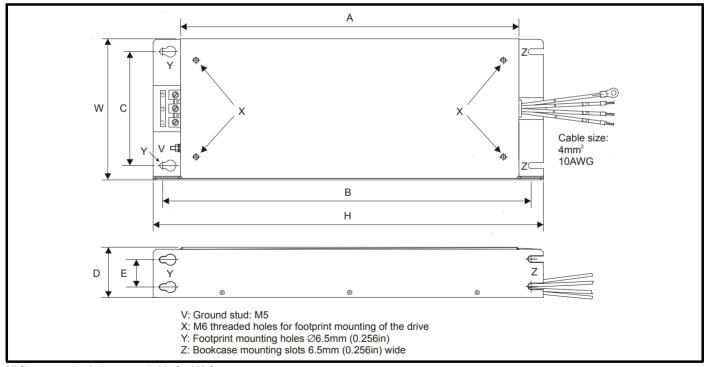



Figure 3-48 Size 4 to 6 mounting of EMC filter



NOTE

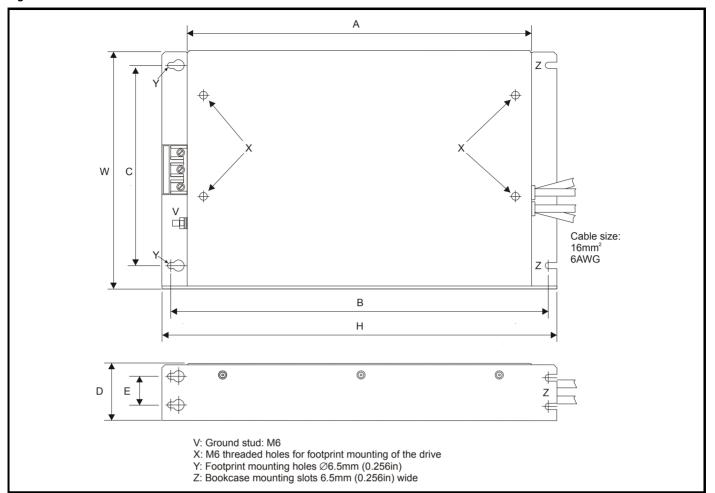
The EMC filter cannot be footprint mounted when the conduit box is used.


Figure 3-49 Size 1 external EMC filter

All filter mounting holes are suitable for M6 fasteners.

CT part no.	Manufacturer	Α	В	С	D	Н	W
4200-6118	Schaffner Epcos					440 mm	
4200-6119		390 mm	423 mm	74 mm	45 mm	(17.323 in)	100 mm
4200-6121		(15.354 in)	(16.654 in)	(2.913 in)	(1.772 in)	450 mm	(3.937 in)
4200-6120	Ерсоз					(17.717 in)	

Figure 3-50 Size 2 external EMC filter



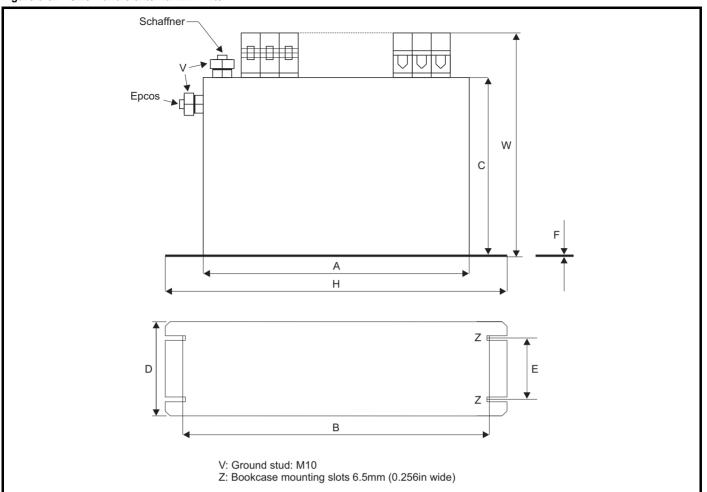
All filter mounting holes are suitable for M6 fasteners.

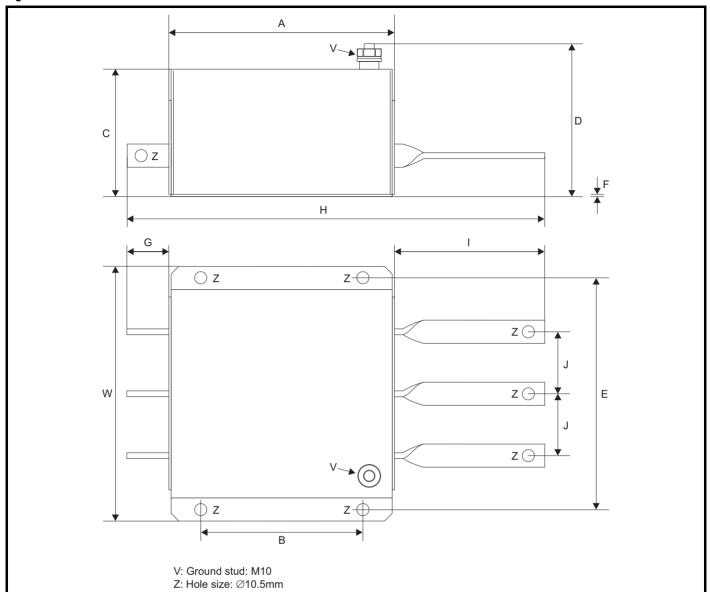
CT part no.	Manufacturer	Α	В	С	D	E	Н	W
4200-6210	Schaffner	371.5 mm	404.5 mm	125 mm	55 mm	30 mm	428.5 mm (16.870 in)	155 mm
4200-6211	Epcos	(14.626 in)	(15.925 in)	(4.921 in)	(2.165 in)	(1.181 in)	431.5 mm (16.988 in)	(6.102 in)

		Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information	
--	--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	------------------	-------------------	--------------	---------------------	----------	---------------------	-------------------	-------------	---------------------------	--

Figure 3-51 Size 3 external EMC filter

CT part no.	Manufacturer	Α	В	С	D	E	Н	W
4200-6305		361 mm					414 mm	
4200-6307	Schaffner	(14.213 in)	396 mm	210 mm	60 mm	30 mm	(16.299 in)	250 mm
4200-6309		(14.210111)	(15.591 in)	(8.268 in)	(2.362 in)	(1.181 in)	(10.200 III)	(9.843 in)
4200-6306	Epcos	365 mm	(10.001 111)	(0.200 111)	(2.002 111)	(1.101 III)	425 mm	(0.040 III)
4200-6308	Ерсоз	(14.370 in)					(16.732 in)	


Figure 3-52 Size 4 and 5 external EMC filter

CT part no.	Manufacturer	Α	В	С	D	E	F	Н	W
4200-6406					100 mm	65 mm			225 mm (8.858 in)
4200-6408	Schaffner			170 mm	(3.937 in)	(2.559 in)	1.5 mm		208 mm (8.189 in)
4200-6503	Schainer			(6.693 in)	120 mm (4.724 in)	85 mm (3.346 in)	(0.059in)		249 mm (9.803 in)
4200-6504		260 mm (10.236 in)	275 mm (10.827 in)		100 mm (3.937 in)	65 mm (2.559 in)		300 mm (11.811 in)	225 mm (8.858 in)
4200-6405				150 mm	90 mm	65 mm	2 mm		207 mm (8.150 in)
4200-6407	Epcos			(5.906 in)	(3.543in)	(2.559 in)	(0.079 in)	_	205 mm (8.071 in)
4200-6501 4200-6502				170 mm (6.693 in)	120 mm (4.724 in)	85 mm (3.346 in)	1 mm (0.039 in)		249 mm (9.803 in)

Figure 3-53 Size 6 external EMC filter

CT part no.	Manufacturer	Α	В	С	D	E	F	G	Н	I	7	W
4200-6603	Schaffner	191 mm		110 mm	136 mm			00 111111	295 mm (11.614 in)	66 mm (2.958 in)		
4200-6604	Schaine	(7.717 in)	140 mm (5.512 in)	(4.331 in)	(5.354 in)	210 mm (8.268 in)	2 mm (0.079in)	(1.496 in)	357 mm (14.055 in)	128 mm (5.039 in)	53.5 mm (2.106 in)	230 mm (9.055 in)
4200-6601	Epcos	200 mm		108 mm	147 mm			36.5 mm	364 mm	127 mm		
4200-6602	Ерсоз	(7.874 in)		(4.252 in)	(5.787 in)			(1.437 in)	(14.331 in)	(5.000 in)		

Product Information Electrical Installation Getting Started Running the motor Safety **UL** Listing Optimization PC tools Diagnostics Information Installation parameters Data Information parameters operation

3.10 Electrical terminals

3.10.1 Terminal sizes and torque settings

To avoid a fire hazard and maintain validity of the UL listing, adhere to the specified tightening torques for the power and ground terminals. Refer to the following tables.

Table 3-10 Drive control and relay terminal data

Ì	Model	Connection type	Torque setting
1	All	Plug-in terminal block	0.5 N m (0.4 lb ft)

Table 3-11 Wall mounted drive power terminal data

Model			_	rrent DC raking	Ground	terminal
size	Term.	Max torque	Term.	Max torque	Term.	Max torque
1	Plug-in terminal block	1.5 N m (1.1 lb ft)	Terminal block (M4 screws)	1.5 N m (1.1 lb ft)	M5 stud	4.0 N m (1.9 lb ft)
2	Plug-in terminal block	1.5 N m (1.1 lb ft)	Terminal block (M5 screws)	1.5 N m (1.1 lb ft)	M5 stud	4.0 N m (1.9 lb ft)
3	Terminal block (M6 screws)	2.5 N m (1.8 lb ft)	Terminal block (M6 screws)	2.5 N m (1.8 lb ft)	M6 bolt	4.0 N m (1.9 lb ft)
4	M10 stud	15 N m (11.1 lb ft)	M10 stud	15 N m (11.1 lb ft)	M10 stud	12.0 N m (8.8 lb ft)
5	M10 stud	15 N m (11.1 lb ft)	M10 stud	15 N m (11.1 lb ft)	M10 stud	4.0 N m (1.9 lb ft)
6	M10 stud	15 N m (11.1 lb ft)	M10 stud	15 N m (11.1 lb ft)	M10 stud	4.0 N m (1.9 lb ft)

Table 3-12 Plug-in terminal block maximum cable sizes

Model size	Terminal block description	Max cable size
All	11 way control connectors	1.5 mm ² (16 AWG)
All	2 way relay connector	2.5 mm ² (12 AWG)
1 and 2	6 way AC power connector	8 mm ² (8 AWG)
4, 5 and 6	Low Voltage DC Enable connector	1.5 mm ² (16 AWG)
6	Heatsink fan supply connector	1.5 mm ² (16 AWG)
All	BAN connector	1.5 mm ² (16 AWG)

Table 3-13 Schaffner external EMC filter terminal data (size 1 to 6)

CT part		wer ctions	O .,	ound ections
number	Max cable size Max torque		Ground stud size	Max torque
4200-6118	4mm ²	0.8 N m	M5	3.5 N m
4200-6119	12AWG	(0.6 lb ft)	IVIO	(2.6 lb ft)
4200-6210	10mm ² 8AWG	2 N m (1.5 lb ft)	M5	3.5 N m (2.6 lb ft)
4200-6305	10 2	22 N m		3.9 N m
4200-6307	16mm ² 6AWG	(1.6 lb ft)	M6	(2.9 lb ft)
4200-6309	UAWO	(1.0 10 10)		(2.0 10 11)
4200-6406	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)
4200-6408	25mm ² 4AWG	2.3 N m (1.7 lb ft)	M6	3.9 N m (2.9 lb ft)
4200-6503	95mm ² 4/0AWG	20 N m (14.7 lb ft)	M10	25 N m (18.4 lb ft)
4200-6504	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)
4200-6603			M10	25 N m
4200-6604			IVITO	(18.4 lb ft)

Table 3-14 Epcos external EMC Filter terminal data

CT part		wer ctions		ound ections
number	Max cable size	Max torque	Ground stud size	Max torque
4200-6120	4mm ²	0.6 N m	M5	3.0 N m
4200-6121	12AWG	(0.4 lb ft)	IVIO	(2.2 lb ft)
4200-6211	10mm ² 8AWG	1.35 N m (1.0 lb ft)	M5	3.0 N m (2.2 lb ft)
4200-6306	16mm ² 6AWG	2.2 N m (1.6 lb ft)	M6	5.1 N m
4200-6308	10mm ² 8AWG	1.35 N m (1.0 lb ft)	IVIO	(3.8 lb ft)
4200-6405	50mm ²	6.8 N m		
4200-6407	0AWG	(5.0 lb ft)		
4200-6501	95mm ²	20 N m	M10	10 N m
4200-6502	4/0AWG	(14.7 lb ft)	IVITO	(7.4 lb ft)
4200-6601				
4200-6602				

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

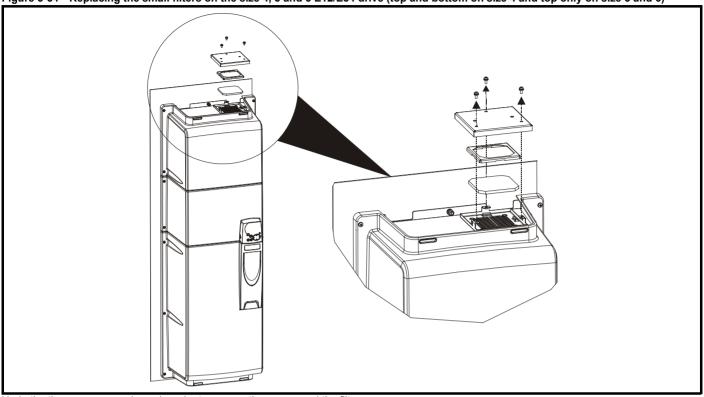
3.11 Routine maintenance

The standard drive should be installed in a cool, clean, well ventilated location. Contact of moisture and dust with the drive should be prevented.

The E12/E54 drive is protected from airborne dust and splashing water. Regular checks of the following should be carried out to ensure drive / installation reliability are maximised:

installation reliability at	o maximiood.
Environment	
Ambient temperature	Ensure the standard enclosure temperature remains at or below maximum specified
Dust	Ensure the standard drive remains dust free – check that the heatsink and drive fan are not gathering dust. The lifetime of the fan is reduced in dusty environments.
Moisture	Ensure the drive enclosure shows no signs of condensation
Enclosure	
Enclosure door filters	Ensure filters are not blocked and that air is free to flow
E12/E54 drive cover filters (size 4 to 6 only)	Replace filters regularly, at least every 3 months. In some environments a filter change may be required more frequently
E12/E54 drive cover	Ensure that all seals are correctly located and not damaged
Electrical	
Screw connections	Ensure all screw terminals remain tight
Crimp terminals	Ensure all crimp terminals remains tight – check for any discoloration which could indicate overheating
Cables	Check all cables for signs of damage

Product Information Getting Started Technical Data Safety **UL** Listing Optimization PC tools Diagnostics Information Installation Installation the motor Information parameters operation parameters


3.11.1 E12/E54 filter change

There are two types of filter for the E12/E54 drives:

Small: 5610-0000 Large: 5610-0001

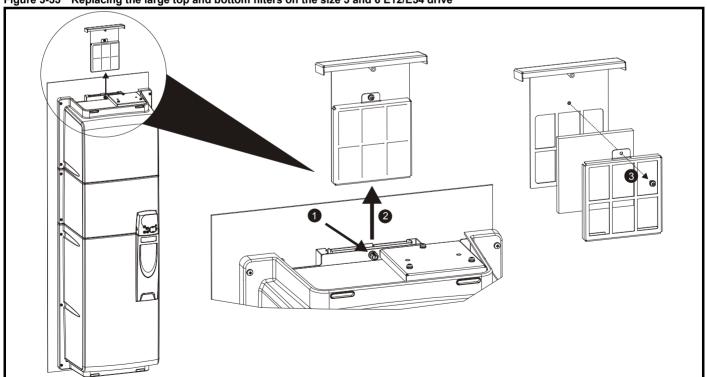
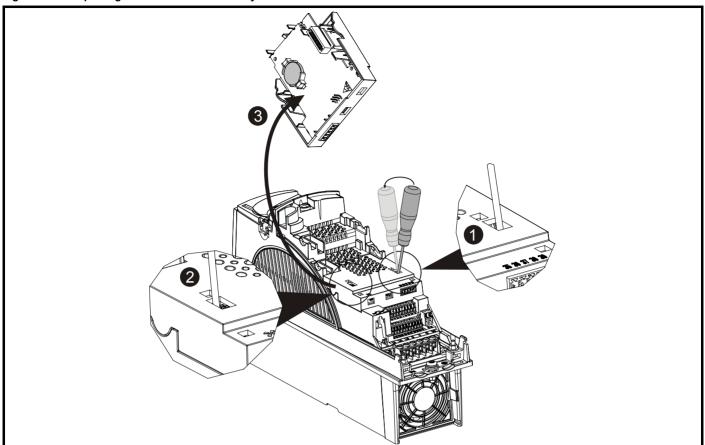

In order to replace the filters, follow the following instructions:

Figure 3-54 Replacing the small filters on the size 4, 5 and 6 E12/E54 drive (top and bottom on size 4 and top only on size 5 and 6)

Undo the three screws as shown in order to remove the covers and the filter.

Figure 3-55 Replacing the large top and bottom filters on the size 5 and 6 E12/E54 drive



- 1. Unwind the screw to release the filter cartridge.
- 2. Slide cartridge out in the direction shown.
- Undo screw fully in order to open cartridge and replace filter.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

3.11.2 Real-time clock battery replacement

Figure 3-56 Replacing the real-time clock battery

- Insert a flat head screw driver into the right slot as shown and carefully use as a lever to unclip battery cover
- Repeat the above process for the left slot
- Remove and rotate the cover to expose the location of the battery

Once the battery has been replaced, click the battery cover back into position.

NOTE

Low battery voltage is indicated when Pr **17.44** = 1.

A battery replacement service is provided by Control Techniques if required.

Safety Product Information Installation Inst

4 Electrical Installation

Many cable management features have been incorporated into the product and accessories, this chapter shows how to optimize them. Key features include:

- Internal EMC filter
- · EMC compliance with shielding / grounding accessories
- · Product rating, fusing and cabling information
- Brake resistor details (selection / ratings)

Electric shock risk

The voltages present in the following locations can cause severe electric shock and may be lethal:

- · AC supply cables and connections
- · DC and brake cables, and connections
- · Output cables and connections
- Many internal parts of the drive, and external option units Unless otherwise indicated, control terminals are single insulated and must not be touched.

Isolation device

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

STOP function

The STOP function does not remove dangerous voltages from the drive, the motor or any external option units.

Stored charge

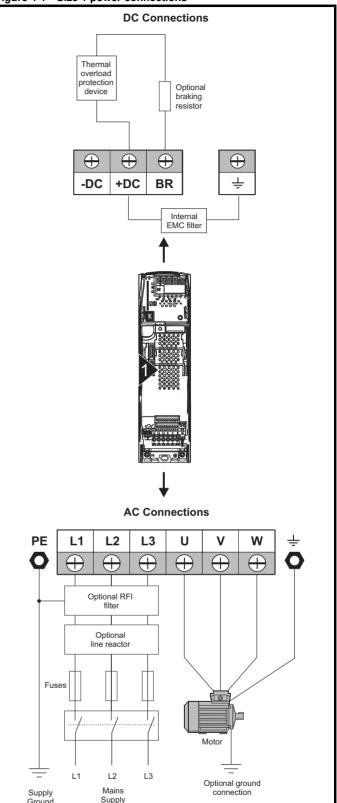
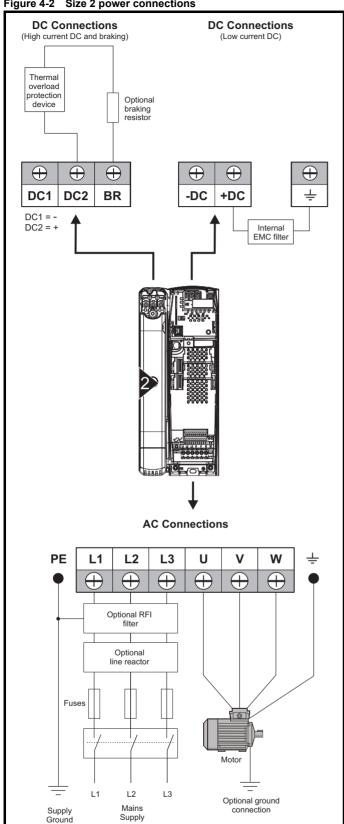
The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

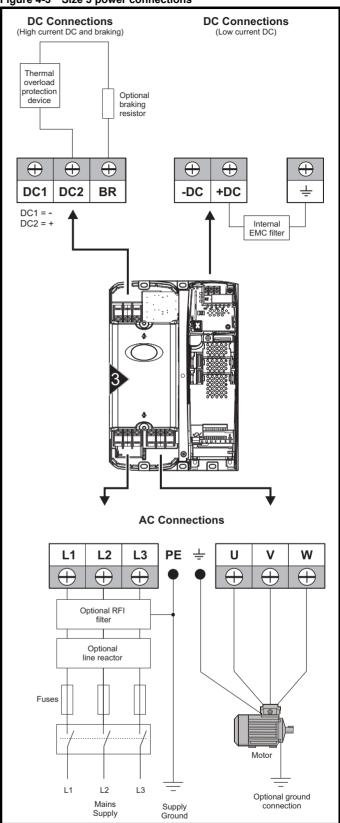
Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult Control Techniques or their authorized distributor.

4.1 Power connections

4.1.1 AC and DC connections

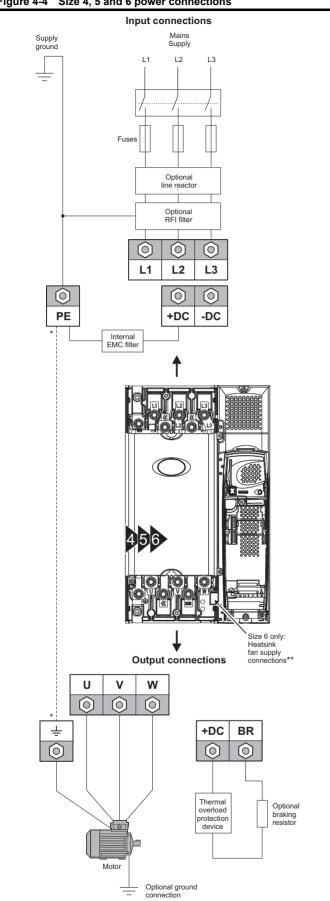
Figure 4-1 Size 1 power connections


Figure 4-2 Size 2 power connections

If the heatsink mounted resistor is used (size 1 and 2 only), an overload protection device is not required. The resistor is designed to fail safely under fault conditions.

See Figure 4-5 for further information on ground connections.


Figure 4-3 Size 3 power connections

On size 2 and 3, the high current DC connections must always be used when using a braking resistor, supplying the drive from DC (low voltage DC $\,$ or high voltage DC) or using the drive in a parallel DC bus system. The low current DC connection is used to connect low voltage DC to the drive internal power supply and to connect the internal EMC filter.

See Figure 4-6 for further information on ground connections.

Figure 4-4 Size 4, 5 and 6 power connections

* See section 4.1.2 Ground connections .

4.1.2 **Ground connections**

Size 1

On a size 1, the supply and motor ground connections are made using the studs located either side of the drive near the plug-in power connector. Refer to Figure 4-1 on page 60.

On a size 2, the supply and motor ground connections are made using the grounding bridge that locates at the bottom of the drive. See Figure 4-5 for details.

On a size 3, the supply and motor ground connections are made using an M6 nut and bolt that locates in the fork protruding from the heatsink between the AC supply and motor output terminals. See Figure 4-6 for

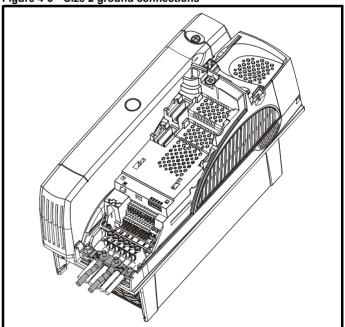
Size 4, 5 and 6

On a size 4, 5 and 6, the supply and motor ground connections are made using an M10 bolt at the top (supply) and bottom (motor) of the drive. See Figure 4-7 on page 63.

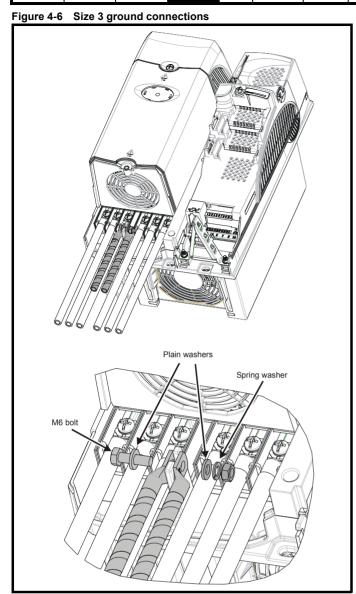
The supply ground and motor ground connections to the drive are connected internally by a copper conductor with a cross-sectional area aiven below:

Size 4: 19.2mm² (0.03in², or slightly bigger than 6 AWG)

Size 5: 60mm² (0.09in², or slightly bigger than 1 AWG)


Size 6: 75mm² (0.12in², or slightly bigger than 2/0 AWG)

This connection is sufficient to provide the ground (equipotential bonding) connection for the motor circuit under the following conditions:


To standard	Conditions
IEC 60204-1 & EN 60204-1	Supply phase conductors having cross-sectional area not exceeding: Size 4: 38.4mm ² Size 5: 120mm ² Size 6: 150mm ²
NFPA 79	Supply protection device rating not exceeding: Size 4: 200A Size 5: 600A Size 6: 1000A

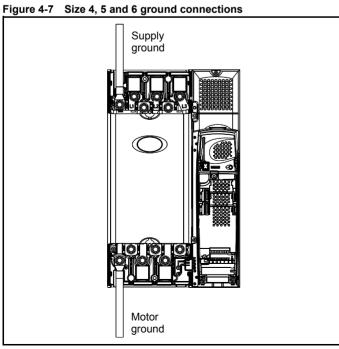

If the necessary conditions are not met, an additional ground connection must be provided to link the motor circuit ground and the supply ground.

Figure 4-5 Size 2 ground connections

^{**} See section 4.5 Fan connections on page 65 for more information.

The ground loop impedance must conform to the requirements of local safety regulations.

The drive must be grounded by a connection capable of carrying the prospective fault current until the protective device (fuse, etc.) disconnects the AC supply.

The ground connections must be inspected and tested at appropriate intervals.

4.2 AC supply requirements

Voltage:

BAx2xx 200V to 240V ±10% 380V to 480V ±10% BAx4xx BAx5xx 500V to 575V +10% BAx6xx 500V to 690V ±10%

Number of phases: 3

Maximum supply imbalance: 2% negative phase sequence (equivalent to 3% voltage imbalance between phases).

Frequency range: 48 to 65 Hz

For UL compliance only, the maximum supply symmetrical fault current must be limited to 100kA

Supply types

Drives rated for supply voltage up to 575V are suitable for use with any supply type, i.e. TN-S, TN-C-S, TT, IT, with grounding at any potential, i.e. neutral, centre or corner ("grounded-delta").

Grounded delta supplies >575V are not permitted.

Drives are suitable for use on supplies of installation category III and lower, according to IEC60664-1. This means they may be connected permanently to the supply at its origin in a building, but for outdoor installation additional over-voltage suppression (transient voltage surge suppression) must be provided to reduce category IV to category III.

Operation with IT (ungrounded) supplies:

Special attention is required when using internal or external EMC filters with ungrounded supplies, because in the event of a ground (earth) fault in the motor circuit the drive may not trip and the filter could be over-stressed. In this case, either the filter must not be used (removed) or additional independent motor ground fault protection must be provided. Refer to Table 4-1.

For instructions on removal, refer to Figure 4-20 Removal of internal EMC filter (size 1 to 3) and Figure 4-21 Removal of internal EMC filter (sizes 4 to 6) on page 74.

For details of ground fault protection contact the supplier of the drive.

A ground fault in the supply has no effect in any case. If the motor must continue to run with a ground fault in its own circuit then an input isolating transformer must be provided and if an EMC filter is required it must be located in the primary circuit.

Unusual hazards can occur on ungrounded supplies with more than one source, for example on ships. Contact the supplier of the drive for more information

Table 4-1 Behaviour of the drive in the event of a motor circuit ground (earth) fault with an IT supply

Drive size	Internal filter only	External filter (with internal)
1 and 2	Drive trips on fault	Drive trips on fault
3	May not trip – precautions required	Drive trips on fault
4 to 6	May not trip – precautions required	May not trip – precautions required

Safety **UL** Listina Optimization PC tools Diagnostics Information operation Information Installation Installation narameter the moto narameters Information

Supplies requiring line reactors

Input line reactors reduce the risk of damage to the drive resulting from poor phase balance or severe disturbances on the supply network.

Where line reactors are to be used, reactance values of approximately 2% are recommended. Higher values may be used if necessary, but may result in a loss of drive output (reduced torque at high speed) because of the voltage drop.

For all drive ratings, 2% line reactors permit drives to be used with a supply unbalance of up to 3.5% negative phase sequence (equivalent to 5% voltage imbalance between phases).

Severe disturbances may be caused by the following factors, for example:

- Power factor correction equipment connected close to the drive.
- Large DC drives having no or inadequate line reactors connected to the supply
- Across the line (DOL) started motor(s) connected to the supply such that when any of these motors are started, the voltage dip exceeds

Such disturbances may cause excessive peak currents to flow in the input power circuit of the drive. This may cause nuisance tripping, or in extreme cases, failure of the drive.

Drives of low power rating may also be susceptible to disturbance when connected to supplies with a high rated capacity.

Line reactors are particularly recommended for use with the following drive models when one of the above factors exists, or when the supply capacity exceeds 175kVA:

BA1201 BA1202 BA1203 BA1204

BA1401 BA1402 BA1403 BA1404

Model sizes BA1405 to BA4606 have an internal DC choke and BA5201 to BA6602 have internal AC line chokes, so they do not require AC line reactors except for cases of excessive phase unbalance or extreme supply conditions.

When required, each drive must have its own reactor(s). Three individual reactors or a single three-phase reactor should be used.

Reactor current ratings

The current rating of the line reactors should be as follows:

Continuous current rating:

Not less than the continuous input current rating of the drive

Repetitive peak current rating:

Not less than twice the continuous input current rating of the drive

Input inductor calculation

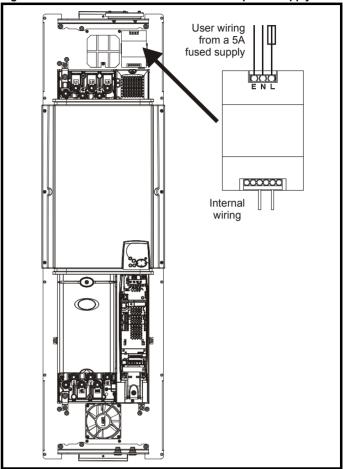
To calculate the inductance required (at Y%), use the following equation:

$$L = \frac{Y}{100} \times \frac{V}{\sqrt{3}} \times \frac{1}{2\pi fI}$$

Where

I = drive rated input current (A)

L = inductance (H)


f = supply frequency (Hz)

V = voltage between lines

4.3 Auxiliary power supply

The size 6 E12/54 drive requires an auxiliary 110V or 230V power supply to feed the internal 24V power supply. The 24V power supply is used to supply the rectifier control electronics and the heatsink fans on the power module.

Figure 4-8 Location of size 6 E12/54 drive 24V power supply

CT part number: 8510-0000

Current rating: 10A

Input voltage: 85 to 123 / 176 to 264Vac auto switching

Cable size: 0.5mm² (20AWG) Supply fuse: 5A slow-blow

4.4 Supplying the drive with DC / DC bus paralleling

The connecting of the DC bus between several drives is typically used to:

- 1. Return energy from a drive which is being overhauled by the load to a second motoring drive.
- Allow the use of one braking resistor to dissipate regenerative energy from several drives.

There are limitations to the combinations of drives which can be used in this configuration.

For application data, contact the supplier of the drive.

Safety Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the moto operation parameters Data Information

4.5 Fan connections

4.5.1 Heatsink fan supply

The heatsink fan on size 1 to 5 is supplied internally by the drive. The heatsink fan on size 6 requires an external 24Vdc supply. The connections for the heatsink fan supply must be made to the upper terminal connector near to the W phase output on the drive. Figure 4-9 shows the position of the heatsink fan supply connections.

Figure 4-9 Location of the size 6 heatsink fan supply connections

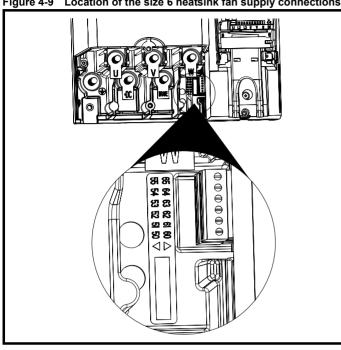
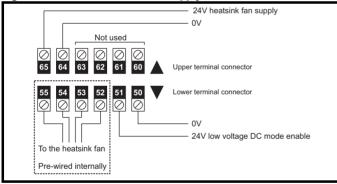



Figure 4-10 Size 6 heatsink fan supply connections

The heatsink fan supply requirements are as follows:

Nominal voltage: 24Vdc 23.5Vdc Minimum voltage: Maximum voltage: 27Vdc Current drawn: 3.3A

24V, 100W, 4.5A Recommended power supply:

4A fast blow (I²t less than 20A²s) Recommended fuse:

4.6 Control 24Vdc supply

The 24Vdc input has three main functions

- It can be used to supplement the drive's own internal 24V when multiple SM-I/O Plus modules are being used and the current drawn by these modules is greater than the drive can supply. (If too much current is drawn from the drive, the drive will initiate a 'PS.24V' trip)
- It can be used as a back-up power supply to keep the control circuits of the drive powered up when the line power supply is removed. This allows any fieldbus modules or serial communications to continue to operate.

It can be used to commission the drive when the line power supply is not available, as the display operates correctly. However, the drive will be in the UV trip state unless either line power supply or low voltage DC operation is enabled, therefore diagnostics may not be possible. (Power down save parameters are not saved when using the 24V back-up power supply input.)

The working voltage range of the 24V power supply is as follows:

Maximum continuous operating voltage: 30 0 V Minimum continuous operating voltage: 192 V Nominal operating voltage: 24.0 V Minimum start up voltage: 21.6 V Maximum power supply requirement at 24V: 60 W Recommended fuse: 3 A, 50 Vdc

Minimum and maximum voltage values include ripple and noise. Ripple and noise values must not exceed 5%.

4.7 Ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2% negative phase-sequence imbalance and rated at the supply fault current given in Table 4-2.

Table 4-2 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
All	100

Safety Information Product Information Mechanical Installation Electrical Getting Installation Started Basic parameters Running the motor SMARTCARD operation Advanced parameters Technical Data UL Listing Information Optimization PC tools Diagnostics

Table 4-3 Size 1 to 3 input current, fuse and cable size ratings (European)

Model	Typical input	Maximum continuous	Fuse rating	Cable EN60		
Wiodei	current	input current	IEC gG	Input	Output	
	Α	Α	Α	mm ²	mm ²	
BA1201	7.1	9.5	10	1.5	1.0	
BA1202	9.2	11.3	12	1.5	1.0	
BA1203	12.5	16.4	20	4.0	1.0	
BA1204	15.4	19.1	20	4.0	1.5	
BA2201	13.4	18.1	20	4.0	2.5	
BA2202	18.2	22.6	25	4.0	4.0	
BA2203	24.2	28.3	32	6.0	6.0	
BA3201	35.4	43.1	50	16	16	
BA3202	46.8	54.3	63	25	25	
BA1401	4.1	4.8	8	1.0	1.0	
BA1402	5.1	5.8	8	1.0	1.0	
BA1403	6.8	7.4	8	1.0	1.0	
BA1404	9.3	10.6	12	1.5	1.0	
BA1405	10	11	12	1.5	1.0	
BA1406	12.6	13.4	16	2.5	1.5	
BA2401	15.7	17	20	4.0	2.5	
BA2402	20.2	21.4	25	4.0	4.0	
BA2403	26.6	27.6	32	6.0	6.0	
BA3401	34.2	36.2	40	10	10	
BA3402	40.2	42.7	50	16	16	
BA3403	51.3	53.5	63	25	25	
BA3501	5.0	6.7	8	1.0	1.0	
BA3502	6.0	8.2	10	1.0	1.0	
BA3503	7.8	11.1	12	1.5	1.0	
BA3504	9.9	14.4	16	2.5	1.5	
BA3505	13.8	18.1	20	4.0	2.5	
BA3506	18.2	22.2	25	4.0	4.0	
BA3507	22.2	26.0	32	6.0	6.0	

Table 4-4 Size 1 to 3 input current, fuse and cable size ratings (USA)

				•	, , ,
	Typical input	Maximum continuous	Fuse rating Class CC or		e size 608C
Model	current	input current	J <30A		1
iiiouoi	ourron.	input ourront	Class J >30A	Input	Output
	Α	Α	A	AWG	AWG
BA1201	7.1	9.5	10	14	18
BA1202	9.2	11.3	15	14	16
BA1203	12.5	16.4	20	12	14
BA1204	15.4	19.1	20	12	14
BA2201	13.4	18.1	20	12	14
BA2202	18.2	22.6	25	10	10
BA2203	24.2	28.3	30	8	8
BA3201	35.4	43.1	45	6	6
BA3202	46.8	54.3	60	4	4
BA1401	4.1	4.8	8	16	22
BA1402	5.1	5.8	8	16	20
BA1403	6.8	7.4	10	16	18
BA1404	9.3	10.6	15	14	16
BA1405	10	11	15	14	14
BA1406	12.6	13.4	15	14	14
BA2401	15.7	17	20	12	14
BA2402	20.2	21.4	25	10	10
BA2403	26.6	27.6	30	8	8
BA3401	34.2	36.2	40	6	6
BA3402	40.2	42.7	45	6	6
BA3403	51.3	53.5	60	4	4
BA3501	5.0	6.7	10	16	18
BA3502	6.0	8.2	10	16	16
BA3503	7.8	11.1	15	14	14
BA3504	9.9	14.4	15	14	14
BA3505	13.8	18.1	20	12	14
BA3506	18.2	22.2	25	10	10
BA3507	22.2	26.0	30	8	8

66 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC 10015	parameters	Data	Diagnostics	Information

Table 4-5 Size 4 and larger input current, fuse and cable size ratings

	Typical input	Maximum input current	Fuse option 1		Fuse o semiconducto with HRC fus	Cable size				
Model	current		IEC class gR	North America: Ferraz HSJ	HRC IEC class gG UL class J	Semi- conductor IEC class aR	EN60204		UL508C	
	Α		Α		А	A	Input mm ²	Output mm ²	Input AWG	Output AWG
BA4201	62.1	68.9	100	90	90	160	25	25	3	3
BA4202	72.1	78.1	100	100	100	160	35	35	3	3
BA4203	94.5	99.9	125	125	125	200	70	70	1	1
BA5201	116	142	200	175	160	200	95	95	2/0	2/0
BA5202	137	165	250	225	200	250	120	120	4/0	4/0
BA4401	61.2	62.3	80	80	80	160	25	25	3	3
BA4402	76.3	79.6	110	110	100	200	35	35	2	2
BA4403	94.1	97.2	125	125	125	200	70	70	1	1
BA5401	126	131	200	175	160	200	95	95	2/0	2/0
BA5402	152	156	250	225	200	250	120	120	4/0	4/0
BA6401	206	215	250	250	250	315	2 x 70	2 x 70	2 x 2/0	2 x 2/0
BA6402	247	258	315	300	300	350	2 x 95	2 x 95	2 x 4/0	2 x 4/0
BA4601	23	26.5	63	60	32	125	4	4	10	10
BA4602	26.1	28.8	63	60	40	125	6	6	8	8
BA4603	32.9	35.1	63	60	50	125	10	10	8	8
BA4604	39	41	63	60	50	125	16	16	6	6
BA4605	46.2	47.9	63	60	63	125	16	16	6	6
BA4606	55.2	56.9	80	60	63	125	25	25	4	4
BA5601	75.5	82.6	125	100	90	160	35	35	2	2
BA5602	89.1	94.8	125	100	125	160	50	50	1	1
BA6601	128	139	160	175	150	315	2 x 50	2 x 50	2 x 1	2 x 1
BA6602	144	155	160	175	160	315	2 x 50	2 x 50	2 x 1	2 x 1

Installation class (ref: IEC60364-5-52:2001)

- B1 Separate cables in conduit.
- B2 Multicore cable in conduit
- C Multicore cable in free air.

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40°C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit).

Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower.

The recommended cable sizes above are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

NOTE

The recommended output cable sizes assume that the motor maximum current matches that of the drive. Where a motor of reduced rating is used the cable rating may be chosen to match that of the motor. To ensure that the motor and cable are protected against overload, the drive must be programmed with the correct motor rated current.

UL listing is dependent on the use of the correct type of UL-listed fuse, and applies when symmetrical short-circuit current does not exceed 100kA. See Chapter 14 UL Listing Information on page 249 for sizing information.

Fuses

The AC supply to the drive must be installed with suitable protection against overload and short-circuits. Table 4-3, Table 4-4 and Table 4-5 show recommended fuse ratings. WARNING Failure to observe this requirement will cause risk of fire.

A fuse or other protection must be included in all live connections to the AC supply.

An MCB (miniature circuit breaker) or MCCB (moulded-case circuitbreaker) with type C may be used in place of fuses on sizes 1 to 3 under the following conditions:

- The fault-clearing capacity must be sufficient for the installation
- For frame sizes 2 and 3, the drive must be mounted in an enclosure which meets the requirements for a fire enclosure

See Chapter 14 UL Listing Information for UL listing requirements.

Fuse types

The fuse voltage rating must be suitable for the drive supply voltage.

Ground connections

The drive must be connected to the system ground of the AC supply. The ground wiring must conform to local regulations and codes of practice.

Main AC supply contactor

The recommended AC supply contactor type for sizes 1 to 6 is AC1.

UL Listing Safety Mechanical Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the moto operation parameters Data Information

4.8 Output circuit and motor protection

The output circuit has fast-acting electronic short-circuit protection which limits the fault current to typically no more than five times the rated output current, and interrupts the current in approximately 20µs. No additional short-circuit protection devices are required.

The drive provides overload protection for the motor and its cable. For this to be effective, Pr 0.46 Motor rated current must be set to suit the motor

Pr 0.46 Motor rated current must be set correctly to avoid a risk of fire in the event of motor overload.

There is also provision for the use of a motor thermistor to prevent overheating of the motor, e.g. due to loss of cooling.

Cable types and lengths 4.8.1

Since capacitance in the motor cable causes loading on the output of the drive, ensure the cable length does not exceed the values given in Table 4-6, Table 4-7 and Table 4-8.

Use 105°C (221°F) (UL 60/75°C temp rise) PVC-insulated cable with copper conductors having a suitable voltage rating, for the following power connections:

- AC supply to external EMC filter (when used)
- AC supply (or external EMC filter) to drive
- Drive to motor
- Drive to braking resistor

Table 4-6 Maximum motor cable lengths (200V drives)

	200	oly voltag	е						
Model	Maximum permissible motor cable length for each of the following frequencies								
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz			
BA1201		65m ((210ft)						
BA1202	1	00m (330	ft)			27			
BA1203	130m	(425ft)							
BA1204		150m (490ft)			50m	37m (120ft)			
BA2201			100m	75m	(165ft)	(12011)			
BA2202	200m		(330ft)	(245ft)	(1001.)				
BA2203	(660ft)								
BA3201									
BA3202									
BA4201	250m	185m	125m	90m					
BA4202	(820ft)	(607ft)	(410ft)	(295ft)					
BA4203	(32011)	(55711)	(1.011)	(20011)					
BA5201	250m	185m	125m	90m					
BA5202	(820ft)	(607ft)	(410ft)	(295ft)					

Table 4-7 Maximum motor cable lengths (400V drives)

	400	V Nomina	I AC supp	oly voltag	е					
Model	Maximum permissible motor cable length for each of the following frequencies									
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz				
BA1401		65m ((210ft)							
BA1402	1	00m (330	ft)							
BA1403	130m	(425ft)								
BA1404										
BA1405										
BA1406					50m	37m				
BA2401			100m	75m	(165ft)	(120ft)				
BA2402	200m	150m	(330ft)	(245ft)	(10011)					
BA2403	(660ft)	(490ft)	(33011)							
BA3401										
BA3402										
BA3403										
BA4401										
BA4402				00						
BA4403	250	405	105	90m (295ft)						
BA5401	250m (820ft)	185m (607ft)	125m (410ft)	(23311)						
BA5402	(02011)	(00711)	(41011)							
BA6401										
BA6402										

Table 4-8 Maximum motor cable lengths (575V drives)

	575V Nominal AC supply voltage										
Model	Maximum permissible motor cable length for each of the following frequencies										
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz					
BA3501		150m (490ft)	100m (330ft)	75m (245ft)							
BA3502	1										
BA3503	200										
BA3504	200m (660ft)										
BA3505	(00011)		(33011)	(24311)							
BA3506											
BA3507											

Table 4-9 Maximum motor cable lengths (690V drives)

	690V Nominal AC supply voltage										
Model	Maximum permissible motor cable length for each of the following frequencies										
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz					
BA4601		185m	125m	90m (295ft)							
BA4602	1										
BA4603	Ī										
BA4604	1										
BA4605	250m										
BA4606	(820ft)	(607ft)	(410ft)								
BA5601											
BA5602	1										
BA6601											
BA6602	1										

- Cable lengths in excess of the specified values may be used only when special techniques are adopted; refer to the supplier of the drive.
- The default switching frequency is 3kHz.

Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the moto operation parameters Data Information

High-capacitance cables

The maximum cable length is reduced from that shown in Table 4-6, Table 4-7, Table 4-8 and Table 4-9 if high capacitance motor cables are

Most cables have an insulating jacket between the cores and the armor or shield: these cables have a low capacitance and are recommended. Cables that do not have an insulating jacket tend to have high capacitance; if a cable of this type is used, the maximum cable length is half that quoted in the tables. (Figure 4-11 shows how to identify the two types.)

Figure 4-11 Cable construction influencing the capacitance

The cable used for Table 4-6, Table 4-7, Table 4-8 and Table 4-9 is shielded and contains four cores. Typical capacitance for this type of cable is 130pF/m (i.e. from one core to all others and the shield connected together).

Motor winding voltage 4.8.2

The PWM output voltage can adversely affect the inter-turn insulation in the motor. This is because of the high rate of change of voltage, in conjunction with the impedance of the motor cable and the distributed nature of the motor winding.

For normal operation with AC supplies up to 500Vac and a standard motor with a good quality insulation system, there is no need for any special precautions. In case of doubt the motor supplier should be consulted.

Special precautions are recommended under the following conditions. but only if the motor cable length exceeds 10m:

- AC supply voltage exceeds 500V
- DC supply voltage exceeds 670V
- Operation of 400V drive with continuous or very frequent sustained braking
- Multiple motors connected to a single drive

For multiple motors, the precautions given in section 4.8.3 Multiple motors should be followed.

For the other cases listed, it is recommended that an inverter-rated motor be used. This has a reinforced insulation system intended by the manufacturer for repetitive fast-rising pulsed voltage operation.

Users of 575V NEMA rated motors should note that the specification for inverter-rated motors given in NEMA MG1 section 31 is sufficient for motoring operation but not where the motor spends significant periods braking. In that case an insulation peak voltage rating of 2.2kV is recommended.

If it is not practical to use an inverter-rated motor, an output choke (inductor) should be used. The recommended type is a simple iron-cored component with a reactance of about 2%. The exact value is not critical. This operates in conjunction with the capacitance of the motor cable to increase the rise-time of the motor terminal voltage and prevent excessive electrical stress.

4.8.3 **Multiple motors**

Open-loop only (not RFC mode)

If the drive is to control more than one motor, one of the fixed V/F modes should be selected (Pr 5.14 = Fd or SrE). Make the motor connections as shown in Figure 4-12 and Figure 4-13. The maximum cable lengths in Table 4-6, Table 4-7, Table 4-8 and Table 4-9 apply to the sum of the total cable lengths from the drive to each motor.

It is recommended that each motor is connected through a protection relay

since the drive cannot protect each motor individually. For 人 connection, a sinusoidal filter or an output inductor must be connected as shown in Figure 4-13, even when the cable lengths are less than the maximum permissible. For details of inductor sizes refer to the supplier of the drive.

Figure 4-12 Preferred chain connection for multiple motors

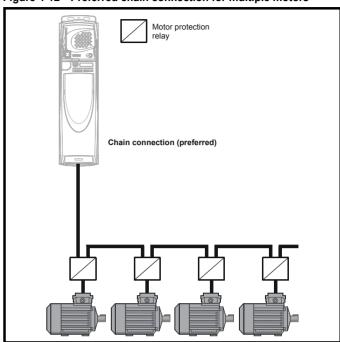
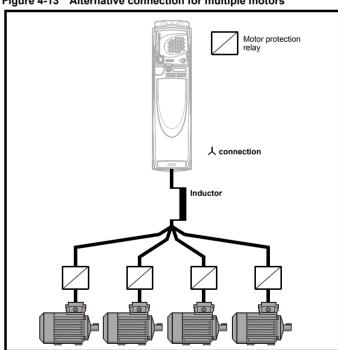



Figure 4-13 Alternative connection for multiple motors

人 / Δ motor operation

be checked before attempting to run the motor.

The default setting of the motor rated voltage parameter is the same as the drive rated voltage, i.e.

400V drive 400V rated voltage 200V drive 200V rated voltage

A typical 3 phase motor would be connected in \curlywedge for 400V operation or \triangle for 200V operation, however, variations on this are common e.g. 人 690V A 400V

Mechanical **UL** Listina Optimization PC tools Diagnostics Information Data Information Installation Installation parameters operation parameters Information

Incorrect connection of the windings will cause severe under or over fluxing of the motor, leading to a very poor output torque or motor saturation and overheating respectively.

4.8.5 **Output contactor**

If the cable between the drive and the motor is to be interrupted by a contactor or circuit breaker, ensure that the drive is disabled before the contactor or circuit breaker is opened or closed. Severe arcing may occur if this circuit is interrupted with the motor running at high current and low sneed

A contactor is sometimes required to be installed between the drive and motor for safety purposes.

The recommended motor contactor is the AC3 type.

Switching of an output contactor should only occur when the output of the drive is disabled.

Opening or closing of the contactor with the drive enabled will lead to:

- 1. OLAC trips (which cannot be reset for 10 seconds)
- High levels of radio frequency noise emission
- 3. Increased contactor wear and tear

4.9 Braking

Braking occurs when the drive is decelerating the motor, or is preventing the motor from gaining speed due to mechanical influences. During braking, energy is returned to the drive from the motor.

When the motor is being braked by the drive, the maximum regenerated power that the drive can absorb is equal to the power dissipation (losses) of the drive.

When the regenerated power is likely to exceed these losses, the DC bus voltage of the drive increases. Under default conditions, the drive brakes the motor under PI control, which extends the deceleration time as necessary in order to prevent the DC bus voltage from rising above a user defined set-point.

If the drive is expected to rapidly decelerate a load, or to hold back an overhauling load, a braking resistor must be installed.

Table 4-10 shows the DC voltage level at which the drive turns on the braking transistor.

Table 4-10 Braking transistor turn on voltage

Drive voltage rating	DC bus voltage level
200V	390V
400V	780V
575V	930V
690V	1120V

NOTE

When a braking resistor is used, Pr 0.15 should be set to FASt ramp mode.

High temperatures

Braking resistors can reach high temperatures. Locate braking resistors so that damage cannot result. Use cable having insulation capable of withstanding high temperatures.

4.9.1 Heatsink mounted braking resistor

A resistor has been especially designed to be mounted within the heatsink of the drive (sizes 1 and 2). See the Installation Sheet provided with the heatsink mounted braking resistor. The design of the resistor is such that no thermal protection circuit is required, as the device will fail safely under fault conditions. On sizes 1 and 2, the in built software overload protection is set up at default for the designated heatsink mounted resistor. Table 4-12 provides the resistor data for each drive rating

NOTE

The heatsink mounted resistor is suitable for applications with a low level of regen energy only. See Table 4-12.

Braking resistor overload protection parameter

Failure to observe the following information may damage the resistor.

The drive's software contains an overload protection function for a braking resistor. On size 1 and 2 this function is enabled at default to protect the heatsink mounted resistor. Below are the parameter settings.

Parameter		200V drive	400V drive
Full power braking time	Pr 10.30	0.04	0.02
Full power braking period	Pr 10.31	3.3	

For more information on the braking resistor software overload protection, see Pr 10.30 and Pr 10.31 full descriptions in the Advanced User Guide.

If the heatsink mounted braking resistor is to be used at more than half of its average power rating then the drive's cooling fan must be at full speed controlled by setting Pr 6.45 to On (1).

Table 4-11 Heatsink mounted braking resistor data

Parameter	Size 1	Size 2
Part number	1220-2756-01	1220-2758-01
DC resistance at 25°C	75Ω	37.5Ω
Peak instantaneous power over 1ms at nominal resistance	8kW	16kW
Average power over 60s *	50W	100W
Ingress Protection (IP) rating	IP54	
Maximum altitude	2000m	

Table 4-12 Heatsink mounted braking resistor data

Parameter	Size 0	Size 1	Size 2
Part number	1299-0001-00	1220-2756-01	1220-2758-01
DC resistance at 25°C	70Ω	75Ω	37.5Ω
Peak instantaneous power over 1ms at nominal resistance	8.7kW	8kW	16kW
Average power over 60s *	50W	50W	100W
Ingress Protection (IP) rating	N/A	IP54	
Maximum altitude		2000m	

* To keep the temperature of the resistor below 70°C (158°F) in a 30°C (86°F) ambient, the average power rating is 50W for size 1 and 100W for size 2. The above parameter settings ensure this is the case.

Size 3 and larger do not have heatsink mounted braking resistors, hence the default values of Pr 10.30 and Pr 10.31 are 0 (i.e. software braking resistor overload protection disabled).

4.9.2 External braking resistor

Overload protection

When an external braking resistor is used, it is essential that an overload protection device is incorporated in the braking warning resistor circuit; this is described in Figure 4-14 on page 71.

When a braking resistor is to be mounted outside the enclosure, ensure that it is mounted in a ventilated metal housing that will perform the following functions:

- Prevent inadvertent contact with the resistor
- Allow adequate ventilation for the resistor

UL Listing Safety Mechanical SMARTCARE Optimization PC tools Diagnostics Information operation Information Installation Installation Started parameters parameters Data Information

When compliance with EMC emission standards is required, external connection requires the cable to be armored or shielded, since it is not fully contained in a metal enclosure. See section 4.11.5 Compliance with generic emission standards on page 77 for further details.

Internal connection does not require the cable to be armored or

Minimum resistances and power ratings Table 4-13 Minimum resistance values and peak power rating for the braking resistor at 40°C (104°F)

Model	Minimum resistance*	Instantaneous power rating kW	Average power for 60s kW
BA1201			1.5
BA1202	43	3.5	2.2
BA1203			3.0
BA1204	29	5.3	4.4
BA2201			6.0
BA2202	18	8.9	8.0
BA2203			8.9
BA3201	5.0	30.3	13.1
BA3202	5.0	30.3	19.3
BA4201**		30.3	22.5
BA4202**	5.0		27.8
BA4203**			30.3
BA5201	2.5	F2	43.5
BA5202	3.5	53	43.5
BA1401			1.5
BA1402	74	0.0	2.2
BA1403	- 74	8.3	3.0
BA1404			4.4
BA1405	50	40.0	6.0
BA1406	58	10.6	8.0
BA2401			9.6
BA2402	10	00.4	13.1
BA2403	19	33.1	19.3
BA3401		35.5	22.5
BA3402	18		27.8
BA3403			33.0
BA4401**	44	55.0	45.0
BA4402**	11	55.3	53.0
BA4403**	9	67.6	67.5
BA5401**	7	00.0	82.5
BA5402**	7	86.9	86.9
BA6401	-	400	90
BA6402	5	122	110
BA3501			4.4
BA3502			6.0
BA3503			8.0
BA3504	18	50.7	9.6
BA3505			13.1
BA3506			19.3
BA3507	1		22.5

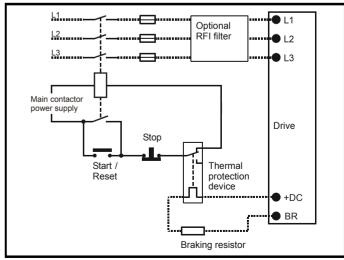
Model	Minimum resistance*	Instantaneous power rating kW	Average power for 60s kW
BA4601**	13		19.3
BA4602**			22.5
BA4603**		95.0	27.8
BA4604**		95.0	33.0
BA4605**			45.0
BA4606**			55.5
BA5601**	10	125.4	67.5
BA5602**		123.4	82.5
BA6601	10	125.4	112.5
BA6602		123.4	125.4

^{*} Resistor tolerance: ±10%

For high-inertia loads or under continuous braking, the continuous power dissipated in the braking resistor may be as high as the power rating of the drive. The total energy dissipated in the braking resistor is dependent on the amount of energy to be extracted from the load.

The instantaneous power rating refers to the short-term maximum power dissipated during the on intervals of the pulse width modulated braking control cycle. The braking resistor must be able to withstand this dissipation for short intervals (milliseconds). Higher resistance values require proportionately lower instantaneous power ratings.

In most applications, braking occurs only occasionally. This allows the continuous power rating of the braking resistor to be much lower than the power rating of the drive. It is essential, though, that the instantaneous power rating and energy rating of the braking resistor are sufficient for the most extreme braking duty that is likely to be encountered.


Optimization of the braking resistor requires a careful consideration of the braking duty.

Select a value of resistance for the braking resistor that is not less than the specified minimum resistance. Larger resistance values may give a cost saving, as well as a safety benefit in the event of a fault in the braking system. Braking capability will then be reduced, which could cause the drive to trip during braking if the value chosen is too large.

Thermal protection circuit for the braking resistor

The thermal protection circuit must disconnect the AC supply from the drive if the resistor becomes overloaded due to a fault. Figure 4-14 shows a typical circuit arrangement.

Figure 4-14 Typical protection circuit for a braking resistor

See Figure 4-1 on page 60, Figure 4-2 and Figure 4-3 on page 61, and

^{**} The minimum resistance value specified is for a stand-alone drive only. If the drive is part of a common DC bus system a different value must be used. Contact the supplier of the drive for more information.

SMARTCARD **UL** Listina Optimization PC tools Diagnostics Information operation Data Information Installation Installation Started parameters the moto narameters Information

Figure 4-4 on page 62 for the location of the +DC and braking resistor connections.

4.9.3 Braking resistor software overload protection

The drive software contains an overload protection function for a braking resistor. In order to enable and set-up this function, it is necessary to enter two values into the drive:

- Resistor short-time overload time (Pr 10.30)
- Resistor minimum time between repeated short-time overloads (Pr 10.31)

This data should be obtained from the manufacturer of the braking resistors.

Pr 10.39 gives an indication of braking resistor temperature based on a simple thermal model. Zero indicates the resistor is close to ambient and 100% is the maximum temperature the resistor can withstand. A br.rS alarm is given if this parameter is above 75% and the braking IGBT is active. An It.br trip will occur if Pr 10.39 reaches 100%, when Pr 10.37 is set to 0 (default value) or 1.

If Pr 10.37 is equal to 2 or 3 an It.br trip will not occur when Pr 10.39 reaches 100%, but instead the braking IGBT will be disabled until Pr 10.39 falls below 95%. This option is intended for applications with parallel connected DC buses where there are several braking resistors. each of which cannot withstand full DC bus voltage continuously. With this type of application it is unlikely the braking energy will be shared equally between the resistors because of voltage measurement tolerances within the individual drives. Therefore with Pr 10.37 set to 2 or 3, then as soon as a resistor has reached its maximum temperature the drive will disable the braking IGBT, and another resistor on another drive will take up the braking energy. Once Pr 10.39 has fallen below 95% the drive will allow the braking IGBT to operate again.

See the Advanced User Guide for more information on Pr 10.30, Pr 10.31. Pr 10.37 and Pr 10.39.

This software overload protection should be used in addition to an external overload protection device.

Fire Mode - important warning.

When Fire Mode is active the motor overload and thermal protection are disabled, as well as a number of drive protection functions. Fire Mode is provided for use only in emergency situations where the safety risk from disabling protection is less than the risk from the drive tripping typically in smoke extraction operation to permit evacuation of a building. The use of Fire Mode itself causes a risk of fire from overloading of the motor or drive, so it must only be used after careful consideration of the balance of risks.

Care must be taken to prevent inadvertent activation or deactivation of Fire Mode. Fire Mode is indicated by a flashing display text warning "Fire mode active".

Care must be taken to ensure that parameters Pr 1.53 or Pr 1.54 are not inadvertently re-allocated to different inputs or variables. It should be noted that, by default, Pr 1.54 is controlled from digital input 4 and changing Pr 6.04 or Pr 8.24 can re-allocate this digital input to another parameter. These parameters are at access level 2 in order to minimise the risk of inadvertent or unauthorized changes. It is recommended that User Security be applied to further reduce the risk (see section 5.10 Parameter access level and security on page 90). These parameters may also be changed via serial communications so adequate precautions should be taken if this functionality is utilised.

4.10 Ground leakage

The ground leakage current depends upon whether the internal EMC filter is installed. The drive is supplied with the filter installed. Instructions for removing the internal filter are given in Figure 4-20 Removal of internal EMC filter (size 1 to 3) and Figure 4-21 Removal of internal EMC filter (sizes 4 to 6) on page 74.

With internal filter installed:

Size 1 to 3: 28mA* AC at 400V 50Hz

30uA DC with a 600V DC bus (10M Ω)

Size 4 to 6: 56mA* AC at 400V 50Hz

18 μ A DC with a 600V DC bus (33 $M\Omega$)

* Proportional to the supply voltage and frequency.

With internal filter removed:

Note that in both cases there is an internal voltage surge protection device connected to ground. Under normal circumstances this carries negligible current.

When the internal filter is installed the leakage current is high. In this case a permanent fixed ground connection must be provided, or other suitable measures taken to prevent a safety hazard occurring if the connection is lost.

4.10.1 Use of residual current device (RCD)

There are three common types of ELCB / RCD:

- 1. AC detects AC fault currents
- 2. A detects AC and pulsating DC fault currents (provided the DC current reaches zero at least once every half cycle)
- 3. B detects AC, pulsating DC and smooth DC fault currents
 - Type AC should never be used with drives.
 - Type A can only be used with single phase drives
 - Type B must be used with three phase drives

Only type B ELCB / RCD are suitable for use with 3 phase inverter drives.

If an external EMC filter is used, a delay of at least 50ms should be incorporated to ensure spurious trips are not seen. The leakage current is likely to exceed the trip level if all of the phases are not energized simultaneously.

EMC (Electromagnetic compatibility)

The requirements for EMC are divided into three levels in the following three sections:

Section 4.11.3, General requirements for all applications, to ensure reliable operation of the drive and minimise the risk of disturbing nearby equipment. The immunity standards specified in section 11 will be met, but no specific emission standards. Note also the special requirements given in Surge immunity of control circuits - long cables and connections outside a building on page 79 for increased surge immunity of control circuits where control wiring is extended.

Section 4.11.4, Requirements for meeting the EMC standard for power drive systems, IEC61800-3 (EN61800-3).

Section 4.11.5. Requirements for meeting the generic emission standards for the industrial environment, IEC61000-6-4, EN61000-6-4, EN50081-2.

The recommendations of section 4.11.3 will usually be sufficient to avoid causing disturbance to adjacent equipment of industrial quality. If particularly sensitive equipment is to be used nearby, or in a nonindustrial environment, then the recommendations of section 4.11.4 or section 4.11.5 should be followed to give reduced radio-frequency emission.

UL Listina Optimization PC tools Diagnostics operation Information Information Installation Installatior parameters parameters Data Information

In order to ensure the installation meets the various emission standards described in:

- The EMC data sheet available from the supplier of the drive
- The Declaration of Conformity at the front of this manual
- Chapter 12 Technical Data on page 214

...the correct external EMC filter must be used and all of the guidelines in section 4.11.3 General requirements for EMC and section 4.11.5 Compliance with generic emission standards must be followed.

Table 4-14 Affinity and EMC filter cross reference

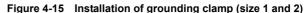
Drive	Schaffner	Epcos
Dilve	CT part no.	CT part no.
BA1201 to BA1202	4200-6118	4200-6121
BA1203 to BA1204	4200-6119	4200-6120
BA2201 to BA2203	4200-6210	4200-6211
BA3201 to BA3202	4200-6307	4200-6306
BA4201 to BA4203	4200-6406	4200-6405
BA5201 to BA5202	4200-6503	4200-6501
BA1401 to BA1404	4200-6118	4200-6121
BA1405 to BA1406	4200-6119	4200-6120
BA2401 to BA2403	4200-6210	4200-6211
BA3401 to BA3403	4200-6305	4200-6306
BA4401 to BA4403	4200-6406	4200-6405
BA5401 to BA5402	4200-6503	4200-6501
BA6401 to BA6402	4200-6603	4200-6601
BA3501 to BA3507	4200-6309	4200-6308
BA4601 to BA4606	4200-6408	4200-6407
BA5601 to BA5602	4200-6504	4200-6502
BA6601 to BA6602	4200-6604	4200-6602

High ground leakage current

When an EMC filter is used, a permanent fixed ground connection must be provided which does not pass through a connector or flexible power cord. This includes the internal WARNING EMC filter.

NOTE

The installer of the drive is responsible for ensuring compliance with the EMC regulations that apply where the drive is to be used.


4.11.1 **Grounding hardware**

The drive is supplied with a grounding bracket, and sizes 1 to 3 with a grounding clamp, to facilitate EMC compliance. They provide a convenient method for direct grounding of cable shields without the use of "pig-tails". Cable shields can be bared and clamped to the grounding bracket using metal clips or clamps¹ (not supplied) or cable ties. Note that the shield must in all cases be continued through the clamp to the intended terminal on the drive, in accordance with the connection details for the specific signal.

¹ A suitable clamp is the Phoenix DIN rail mounted SK14 cable clamp (for cables with a maximum outer diameter of 14mm).

See Figure 4-15 and Figure 4-16 for details on installing the grounding clamp.

See Figure 4-17 for details on installing the grounding bracket.

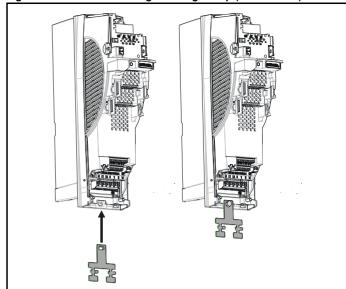


Figure 4-16 Installation of grounding clamp (size 3)

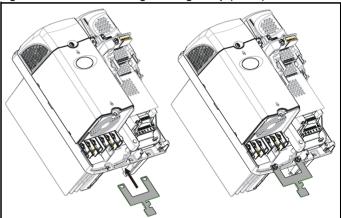
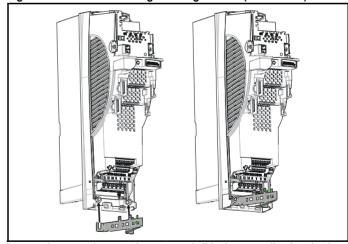



Figure 4-17 Installation of grounding bracket (sizes 1 to 6)

Loosen the ground connection nuts and slide the grounding bracket in the direction shown. Once in place, re-tighten the ground connection

On size 1 and 2, the grounding bracket is secured using the power ground terminal of the drive. Ensure that the supply ground connection is secure after installing / removing the grounding bracket. Failure to do so will result in the drive not being grounded.

Optimization PC tools Diagnostics Information Information Installation Installation parameters the moto operation narameters Data Information

A faston tab is located on the grounding bracket for the purpose of connecting the drive 0V to ground should the user require to do so.

When a size 4 or 5 is through-panel mounted, the grounding link bracket must be folded upwards. A screw can be used to secure the bracket or it can be located under the mounting bracket to ensure that a ground connection is made. This is required to provide a grounding point for the grounding bracket as shown in Figure 4-18.

Figure 4-18 Size 4 and 5 grounding link bracket in its surface mount position (as supplied)

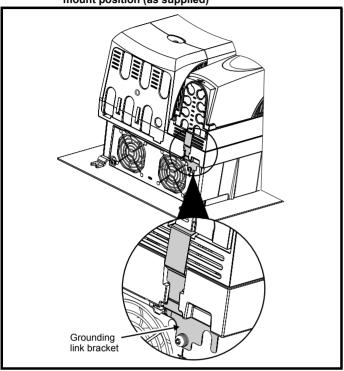
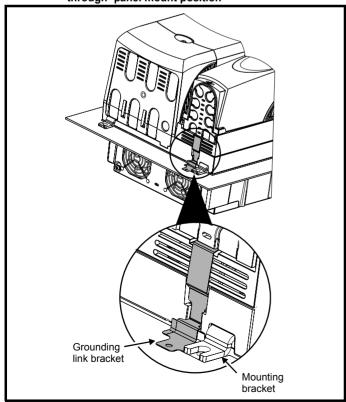
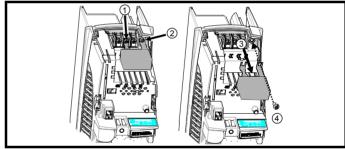



Figure 4-19 Size 4 and 5 grounding link bracket folded up into its through- panel mount position

4.11.2 Internal EMC filter

It is recommended that the internal EMC filter be kept in place unless there is a specific reason for removing it.

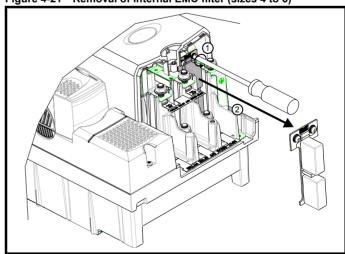
For frame sizes 3 and above, when the drive is used with ungrounded (IT) supplies the internal EMC filter must be removed unless additional motor ground fault protection is installed or, in the case of size 3 only, the external filter is also used.


For instructions on removal, refer to Figure 4-20 and Figure 4-21.

For details of ground fault protection contact the supplier of

If the drive is used as a motoring drive as part of a Unidrive SP regen system, then the internal EMC filter must be removed.

The internal EMC filter reduces radio-frequency emission into the line power supply. Where the motor cable is short, it permits the requirements of EN61800-3 to be met for the second environment - see section 4.11.4 Compliance with EN 61800-3 (standard for Power Drive Systems) on page 76 and section 12.1.23 Electromagnetic compatibility (EMC) on page 231. For longer motor cables the filter continues to provide a useful reduction in emission level, and when used with any length of shielded motor cable up to the limit for the drive, it is unlikely that nearby industrial equipment will be disturbed. It is recommended that the filter be used in all applications unless the instructions given above require it to be removed or the ground leakage current of 28mA for size 1 to 3 or 56mA for size 4 to 6 is unacceptable. See Figure 4-20 and Figure 4-21 for details of removing and installing the internal EMC


Figure 4-20 Removal of internal EMC filter (size 1 to 3)

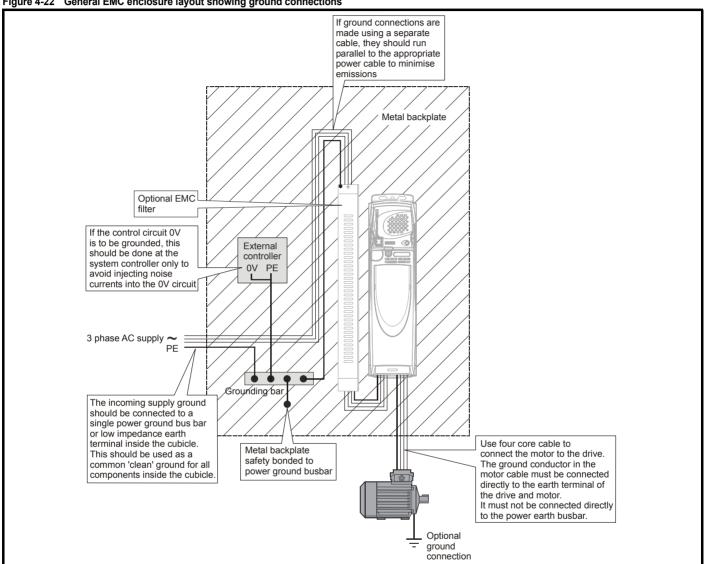
Loosen / remove screws as shown (1) and (2).

Remove filter (3), and ensure the screws are replaced and re-tightened (4).

Figure 4-21 Removal of internal EMC filter (sizes 4 to 6)

Loosen screws (1). Remove EMC filter in the direction shown (2).

Safety	Product	Mechanical	Electrical 6	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation S	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

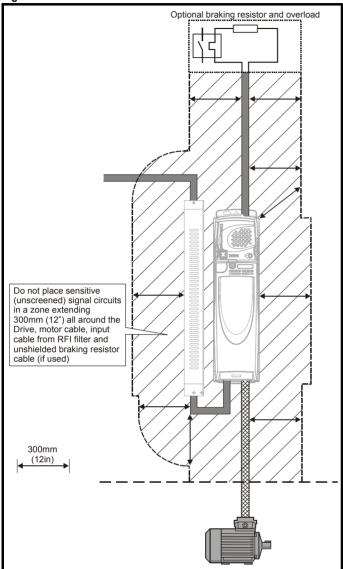

4.11.3 **General requirements for EMC**

Ground (earth) connections

The grounding arrangements should be in accordance with Figure 4-22, which shows a single drive on a back-plate with or without an additional

Figure 4-22 shows how to manage EMC when using an unshielded motor cable. However a shielded cable is preferable, in which case it should be installed as shown in section 4.11.5 Compliance with generic emission standards on page 77.

Figure 4-22 General EMC enclosure layout showing ground connections



UL Listina Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the moto operation narameters Data Information

Cable lavout

Figure 4-23 indicates the clearances which should be observed around the drive and related 'noisy' power cables by all sensitive control signals / equipment.

Figure 4-23 Drive cable clearances

Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the motor cable, to avoid this noise current spreading through the control system.

4.11.4 Compliance with EN 61800-3 (standard for **Power Drive Systems**)

Meeting the requirements of this standard depends on the environment that the drive is intended to operate in, as follows:

Operation in the first environment

Observe the guidelines given in section 4.11.5 Compliance with generic emission standards on page 77. An external EMC filter will always be required.

This is a product of the restricted distribution class according to IEC 61800-3

In a residential environment this product may cause radio interference in which case the user may be required to take adequate measures.

Operation in the second environment

In all cases a shielded motor cable must be used, and an EMC filter is required for all Affinity drives with a rated input current of less than 100A.

The drive contains an in-built filter for basic emission control. In some cases feeding the motor cables (U, V and W) once through a ferrite ring can maintain compliance for longer cable lengths. The requirements of operating in the second environment are met, depending on the motor cable length for 3kHz switching frequency as stated in Table 4-15.

Table 4-15 Second environment emission compliance

Drive	Filter	Voltage	Motor	cable length	n (m)		
size	i iitoi	Voltage	0 to 4	4 to 10	10 to 100		
	In-built	Any	Unrestricted	Restr	icted		
1	In-built and ferrite ring	Any	Unres	Restricted			
	In-built	Any					
2	In-built and ferrite ring	Any	Unres	Restricted			
3	In-built	Any	Restricted				
4	In-built	Any		Restricted			
5	In-built	200 & 400	Unrestricted				
J	ii i-buiit	690	Restricted				
6	In-built	Any		Unrestricted			

Key:

Restricted: EN 61800-3 second environment, restricted distribution (Additional measures may be required to prevent interference)

Unrestricted:EN 61800-3 second environment, unrestricted distribution For longer motor cables, an external filter is required. Where a filter is required, follow the guidelines in section 4.11.5 Compliance with generic emission standards.

Where a filter is not required, follow the guidelines given in section 4.11.3 General requirements for EMC on page 75.

The second environment typically includes an industrial lowvoltage power supply network which does not supply buildings used for residential purposes. Operating the drive in this environment without an external EMC filter may cause interference to nearby electronic equipment whose sensitivity has not been appreciated. The user must take remedial measures if this situation arises. If the consequences of unexpected disturbances are severe, it is recommended that the guidelines in section 4.11.5 Compliance with generic emission standards be adhered to.

Refer to section 12.1.23 Electromagnetic compatibility (EMC) on page 231 for further information on compliance with EMC standards and definitions of environments.

Detailed instructions and EMC information are given in the EMC Data Sheet which is available from the supplier of the drive.

Electrical Installation Getting Started Safety Product Mechanical SMARTCARD **UL** Listing Optimization PC tools Diagnostics Information Information parameters the motor parameters Information Installation operation Data

Compliance with generic emission standards 4.11.5

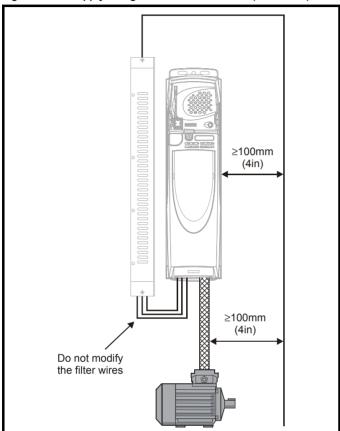
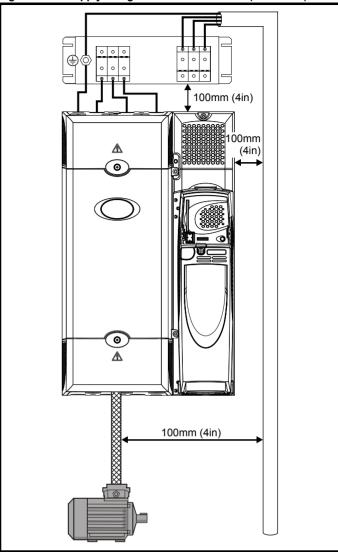
The following information applies to frame sizes 1 to 5.

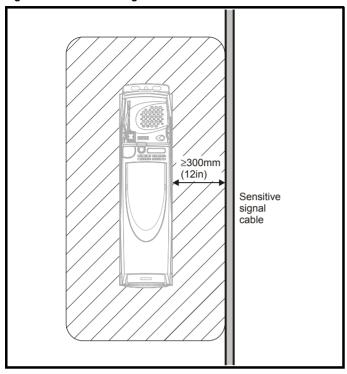
Size 6 upwards does not comply with the requirements of the generic standards for radiated emission.

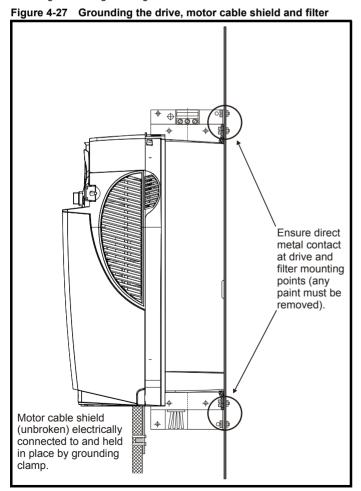
Size 6 complies with the requirements for conducted emission.

Use the recommended filter and shielded motor cable. Observe the layout rules given in Figure 4-24. Ensure the AC supply and ground cables are at least 100mm from the power module and motor cable.

Figure 4-24 Supply and ground cable clearance (size 1 to 3)

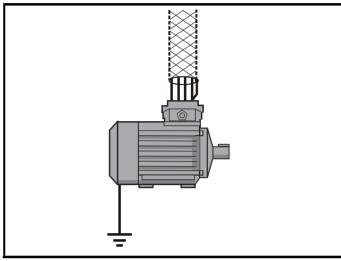




Figure 4-25 Supply and ground cable clearance (size 4 to 6)


Optimization PC tools Diagnostics Information Information Installation Installation the moto operation parameters Data Information

Avoid placing sensitive signal circuits in a zone 300mm (12in) all around the power module.

Figure 4-26 Sensitive signal circuit clearance


Ensure good EMC grounding.

Connect the shield of the motor cable to the ground terminal of the motor frame using a link that is as short as possible and not exceeding 50mm (2in) long. A full 360° termination of the shield to the terminal housing of the motor is beneficial.

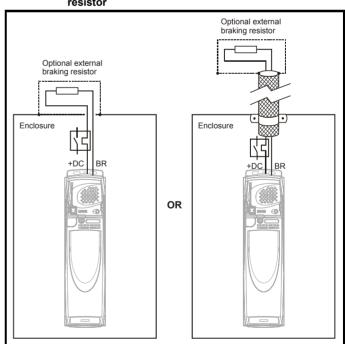
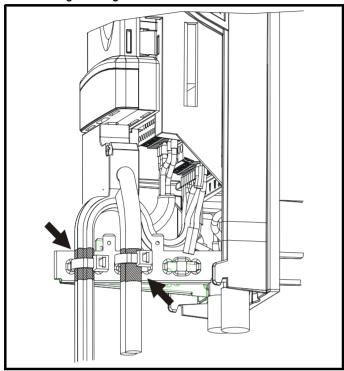

It is unimportant for EMC purposes whether the motor cable contains an internal (safety) ground core, or there is a separate external ground conductor, or grounding is through the shield alone. An internal ground core will carry a high noise current and therefore it must be terminated as close as possible to the shield termination.

Figure 4-28 Grounding the motor cable shield

Unshielded wiring to the optional braking resistor(s) may be used, provided the wiring does not run external to the enclosure. Ensure a minimum spacing of 300mm (12in) from signal wiring and the AC supply wiring to the external EMC filter. Otherwise this wiring must be shielded.

Figure 4-29 Shielding requirements of optional external braking resistor


78 Affinity User Guide Issue Number: 3

Optimization PC tools Diagnostics operation Information Information Installation Installation parameter parameters Data Information

If the control wiring is to leave the enclosure, it must be shielded and the shield(s) clamped to the drive using the grounding bracket as shown in Figure 4-30. Remove the outer insulating cover of the cable to ensure the shield(s) make contact with the bracket, but keep the shield(s) intact until as close as possible to the terminals

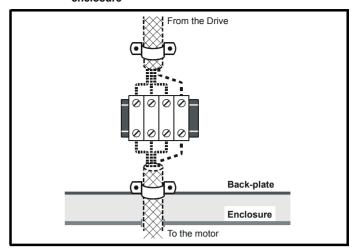
Alternatively, wiring may be passed through a ferrite ring, part no. 3225-1004.

Figure 4-30 Grounding of signal cable shields using the grounding bracket

4.11.6 Variations in the EMC wiring

Interruptions to the motor cable

The motor cable should ideally be a single length of shielded or armored cable having no interruptions. In some situations it may be necessary to interrupt the cable, as in the following examples:

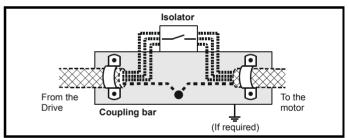

- Connecting the motor cable to a terminal block in the drive enclosure
- Installing a motor isolator / disconnect switch for safety when work is done on the motor

In these cases the following guidelines should be followed.

Terminal block in the enclosure

The motor cable shields should be bonded to the back-plate using uninsulated metal cable-clamps which should be positioned as close as possible to the terminal block. Keep the length of power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away from the terminal block.

Figure 4-31 Connecting the motor cable to a terminal block in the enclosure


Using a motor isolator / disconnect-switch

The motor cable shields should be connected by a very short conductor having a low inductance. The use of a flat metal coupling-bar is recommended; conventional wire is not suitable.

The shields should be bonded directly to the coupling-bar using uninsulated metal cable-clamps. Keep the length of the exposed power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away.

The coupling-bar may be grounded to a known low-impedance ground nearby, for example a large metallic structure which is connected closely to the drive around.

Figure 4-32 Connecting the motor cable to an isolator / disconnect switch

Surge immunity of control circuits - long cables and connections outside a building

The input/output ports for the control circuits are designed for general use within machines and small systems without any special precautions.

These circuits meet the requirements of EN61000-6-2 (1kV surge) provided the 0V connection is not grounded.

In applications where they may be exposed to high-energy voltage surges, some special measures may be required to prevent malfunction or damage. Surges may be caused by lightning or severe power faults in association with grounding arrangements which permit high transient voltages between nominally grounded points. This is a particular risk where the circuits extend outside the protection of a building.

As a general rule, if the circuits are to pass outside the building where the drive is located, or if cable runs within a building exceed 30m, some additional precautions are advisable. One of the following techniques should be used:

- 1. Galvanic isolation, i.e. do not connect the control 0V terminal to ground. Avoid loops in the control wiring, i.e. ensure every control wire is accompanied by its return (0V) wire.
- 2. Shielded cable with additional power ground bonding. The cable shield may be connected to ground at both ends, but in addition the ground conductors at both ends of the cable must be bonded together by a power ground cable (equipotential bonding cable) with

UL Listina Optimization PC tools Diagnostics Information operation Information Installation Installation parameter the moto narameters Information

cross-sectional area of at least 10mm², or 10 times the area of the signal cable shield, or to suit the electrical safety requirements of the plant. This ensures that fault or surge current passes mainly through the ground cable and not in the signal cable shield. If the building or plant has a well-designed common bonded network this precaution is not necessary.

3. Additional over-voltage suppression - for the analog and digital inputs and outputs, a zener diode network or a commercially available surge suppressor may be connected in parallel with the input circuit as shown in Figure 4-33 and Figure 4-34.

If a digital port experiences a severe surge its protective trip may operate (O.Ld1 trip code 26). For continued operation after such an event, the trip can be reset automatically by setting Pr 10.34 to 5.

Figure 4-33 Surge suppression for digital and unipolar inputs and outputs

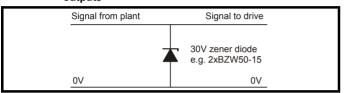
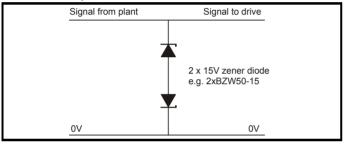



Figure 4-34 Surge suppression for analog and bipolar inputs and outputs

Surge suppression devices are available as rail-mounting modules, e.g. from Phoenix Contact:

Unipolar TT-UKK5-D/24 DC Bipolar TT-UKK5-D/24 AC

These devices are not suitable for encoder signals or fast digital data networks because the capacitance of the diodes adversely affects the signal. Most encoders have galvanic isolation of the signal circuit from the motor frame, in which case no precautions are required. For data networks, follow the specific recommendations for the particular network.

4.12 PC communications connections

Communications port 4.12.1

The drive has a serial communications port (serial port) as standard supporting 2 wire EIA485 communications. Please see Table 4-16 for the connection details for the RJ45 connector.

Figure 4-35 Location of the RJ45 serial comms connector

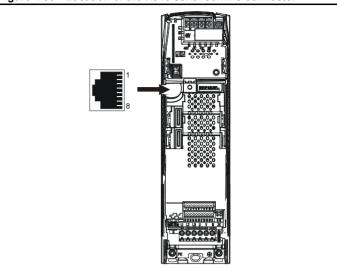


Table 4-16 Connection details for RJ45 connector

Pin	Function
1	120Ω Termination resistor
2	RX TX
3	Isolated 0V
4	+24V (100mA)
5	Isolated 0V
6	TX enable
7	RX\ TX\
8	RX\ TX\ (if termination resistors are required, link to pin 1)
Shell	Isolated 0V

The communications port applies a 2 unit load to the communications

Minimum number of connections are 2, 3, 7 and shield. Shielded cable must be used at all times.

Isolation of the communications port 4.12.2

The PC communications port is double insulated and meets the requirements for SELV in EN50178.

In order to meet the requirements for SELV in IEC60950 (IT equipment) it is necessary for the control computer to be grounded. Alternatively, when a lap-top or similar device is used which has no provision for grounding, an isolation WARNING device must be incorporated in the communications lead.

An isolated serial communications lead has been designed to connect the drive to IT equipment (such as lap-top computers), and is available from the supplier of the drive. See below for details:

Table 4-17 Isolated serial comms lead details

Part number	Description
4500-0087	CT EIA232 Comms cable
4500-0096	CT USB Comms cable

The "isolated serial communications" lead has reinforced insulation as defined in IEC60950 for altitudes up to 3,000m.

When using the CT EIA232 Comms cable the available baud rate is limited to 19.2k baud.

Safety SMARTCARE **UL** Listina Optimization PC tools Diagnostics Information Information Installation Installation parameters the moto operation parameters Data Information

4.13 **Terminal connections**

4.13.1 General

Table 4-18 The terminal connections consist of:

Function	Qty	Control parameters available	Terminal number
Differential analog input	1	Destination, offset, offset trim, invert, scaling	5,6
Single ended analog input	2	Mode, offset, scaling, invert, destination	7,8
Analog output	2	Source, mode, scaling,	9,10
Digital input	3	Destination, invert, logic select	27, 28, 29
Digital input / output	3	Input / output mode select, destination / source, invert, logic select	24, 25, 26
Building automation network	5		35 to 39
Relay	1	Source, invert	41,42
Drive enable	1		31
+10V User output	1		4
+24V User output	1	Source, invert	22
0V common	6		1, 3, 11, 21, 23, 30
+24V External input	1		2

Key:

Destination indicates the parameter which is being controlled by the

parameter: terminal / function

Source indicates the parameter being output by the terminal parameter:

Mode analog - indicates the mode of operation of the terminal, i.e. voltage 0-10V, current 4-20mA etc. parameter:

> digital - indicates the mode of operation of the terminal, i.e. positive / negative logic (the Drive Enable terminal is

fixed in positive logic), open collector.

All analog terminal functions can be programmed in menu 7.

All digital terminal functions (including the relay) can be programmed in menu 8

The setting of Pr 1.14 and Pr 6.04 can cause the function of digital inputs T25 to T29 to change. For more information, please refer to section 11.21.1 Reference modes on page 202.

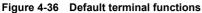
The control circuits are isolated from the power circuits in the drive by basic insulation (single insulation) only. The installer must ensure that the external control circuits are insulated from human contact by at least one layer of insulation (supplementary insulation) rated for use at the AC supply voltage.

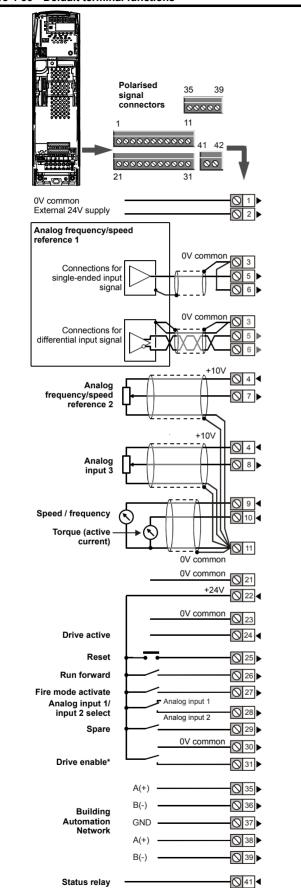
If the control circuits are to be connected to other circuits classified as Safety Extra Low Voltage (SELV) (e.g. to a personal computer), an additional isolating barrier must be included in order to maintain the SELV classification.

If any of the digital inputs or outputs (including the drive enable input) are connected in parallel with an inductive load (i.e. contactor or motor brake) then suitable suppression (i.e. diode or varistor) should be used on the coil of the load. If no suppression is used then over voltage spikes can cause damage to the digital inputs and outputs on the drive.

Ensure the logic sense is correct for the control circuit to be used. Incorrect logic sense could cause the motor to be started unexpectedly.

Positive logic is the default state for Affinity drive.


NOTE


Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the point of exit of the motor cable, to avoid this noise current spreading through the control system.

NOTE

The drive enable terminal is a positive logic input only. It is not affected by the setting of Pr 8.29 Positive logic select.

The common 0V from analog signals should, wherever possible, not be connected to the same 0V terminal as the common 0V from digital signals. Terminals 3 and 11 should be used for connecting the 0V common of analog signals and terminals 21, 23 and 30 for digital signals. This is to prevent small voltage drops in the terminal connections causing inaccuracies in the analog signals.

4.13.2 **Control terminal specification**

1	0V common	
Funct	ion	Common connection for all external devices

2 +24V external input						
Function	To supply the control circuit without providing a supply to the power stage					
Nominal voltage	+24.0Vdc					
Minimum continuous operating voltage	+19.2Vdc					
Maximum continuous operating voltage	+30.0Vdc					
Minimum start-up voltage	21.6Vdc					
Recommended power supply	60W 24Vdc nominal					
Recommended fuse	3A, 50Vdc					

3	0V common	
Functi	on	Common connection for all external devices

4	+10V user output								
Functi	on	Supply for external analog devices							
Voltage tolerance		±1%							
Nominal output current		10mA							
Protection	on	Current limit and trip @ 30mA							

	Precision reference Analog input 1										
5	Non-inverting input										
6	Inverting input										
Defau	ılt function	Frequency/speed reference									
Туре о	f input	Bipolar differential analog (For single-ended use, connect terminal 6 to terminal 3)									
Full sc	ale voltage range	±9.8V ±1%									
	ite maximum e range	±36V relative to 0V									
Workin range	ng common mode voltage	±13V relative to 0V									
Input re	esistance	100kΩ ±1%									
Resolu	ition	16-bit plus sign (as speed reference)									
Monoto	onic	Yes (including 0V)									
Dead b	oand	None (including 0V)									
Jumps		None (including 0V)									
Maxim	um offset	700μV									
Maxim	um non linearity	0.3% of input									
Maxim	um gain asymmetry	0.5%									
Input fi	Iter bandwidth single pole	~1kHz									
Sampli	ing period	250μs with destinations as Pr 1.36 , Pr 1.37 or Pr 3.22 in RFC mode. 4ms for open loop mode and all other destinations in RFC mode.									

Drive OK

○ 42

^{*}The Drive enable terminal is a positive logic input only.

Information Information Installation Installation Started parameters the motor Optimization operation operation		Safety Information	Product Information	Mechanical Installation			Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	--	-----------------------	------------------------	----------------------------	--	--	------------------	-------------------	--------------	---------------------	----------	---------------------	-------------------	-------------	---------------------------

7 Analog input 2					
Default function	Frequency/speed reference				
Type of input	Bipolar single-ended analog voltage or unipolar current				
Mode controlled by	Pr 7.11				
Operating in Voltage mode					
Full scale voltage range	±9.8V ±3%				
Maximum offset	±30mV				
Absolute maximum voltage range	±36V relative to 0V				
Input resistance	>100kΩ				
Operating in current mode					
Current ranges	0 to 20mA ±5%, 20 to 0mA ±5%, 4 to 20mA ±5%, 20 to 4mA ±5%				
Maximum offset	250μΑ				
Absolute maximum voltage (reverse bias)	-36V max				
Absolute maximum current	+70mA				
Equivalent input resistance	≤200Ω at 20mA				
Common to all modes					
Resolution	10 bit + sign				
Sample period	250µs when configured as voltage input with destinations as Pr 1.36, Pr 1.37, Pr 3.22 or Pr 4.08 in RFC mode. 4ms for open loop mode, all other destinations in RFC mode or any destination when configured as a current input.				

8 Analog input 3					
Default function	Not configured				
Type of input	Bipolar single-ended analog voltage, unipolar current or motor thermistor input				
Mode controlled by	Pr 7.15				
Operating in Voltage mode (defau	ilt)				
Voltage range	±9.8V ±3%				
Maximum offset	±30mV				
Absolute maximum voltage range	±36V relative to 0V				
Input resistance	>100kΩ				
Operating in current mode					
Current ranges	0 to 20mA ±5%, 20 to 0mA ±5%, 4 to 20mA ±5%, 20 to 4mA ±5%				
Maximum offset	250μΑ				
Absolute maximum voltage (reverse bias)	-36V max				
Absolute maximum current	+70mA				
Equivalent input resistance	≤200Ω at 20mA				
Operating in thermistor input mod	de				
Internal pull-up voltage	<5V				
Trip threshold resistance	3.3kΩ ±10%				
Reset resistance	1.8kΩ ±10%				
Short-circuit detection resistance	50Ω ±40%				
Common to all modes					
Resolution	10 bit + sign				
Sample period	250µs when configured as voltage input with destinations as Pr 1.36, Pr 1.37, Pr 3.22 or Pr 4.08 in RFC mode. 4ms for open loop mode, all other destinations in RFC mode or any destination when configured as a current input.				

9 Analog output 1	Analog output 1				
10 Analog output 2	Analog output 2				
Terminal 9 default function	OL> Motor FREQUENCY output signal CL> SPEED output signal				
Terminal 10 default function	Motor active current				
Type of output	Bipolar single-ended analog voltage or unipolar single ended current				
Mode controlled by	Pr 7.21 and Pr 7.24				
Operating in Voltage mode (de	efault)				
Voltage range	±9.6V ±5%				
Maximum offset	100mV				
Maximum output current	±10mA				
Load resistance	1k Ω min				
Protection	35mA max. Short circuit protection				
Operating in current mode					
Current ranges	0 to 20mA ±10% 4 to 20mA ±10%				
Maximum offset	600μΑ				
Maximum open circuit voltage	+15V				
Maximum load resistance	500Ω				
Common to all modes					
Resolution	10-bit (plus sign in voltage mode)				
Update period	250µs when configured as a high speed output with sources as Pr 4.02, Pr 4.17 in all modes or Pr 3.02, Pr 5.03 in RFC mode. 4ms when configured as any other type of output or with all other sources.				

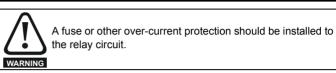
11	0V common	
Function		Common connection for all external devices

21	0V common	
Functi	ion	Common connection for all external devices

+24V user output (s	+24V user output (selectable)				
Terminal 22 default function	+24V user output				
Programmability	Can be switched on or off to act as a fourth digital output (positive logic only) by setting the source Pr 8.28 and source invert Pr 8.18				
Nominal output current	200mA (including all digital I/O)				
Maximum output current	240mA (including all digital I/O)				
Protection	Current limit and trip				

23	0V common	
Funct	ion	Common connection for all external devices

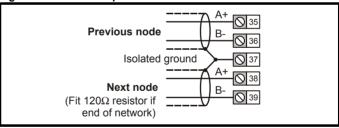
Safety	Product	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD		Advanced	Technical		UL Listina
	Information	Installation	Installation		noromotoro	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information


24	Digital I/O 1					
25	Digital I/O 2					
26	Digital I/O 3					
Terminal	24 default function	DRIVE ACTIVE output				
Terminal	25 default function	DRIVE RESET input				
Terminal	26 default function	RUN FORWARD input				
Туре		Positive or negative logic digital inputs, positive or negative logic push-pull outputs or open collector outputs				
Input / out	tput mode controlled by	Pr 8.31, Pr 8.32 and Pr 8.33				
Operating	g as an input					
Logic mod	de controlled by	Pr 8.29				
Absolute maximum applied voltage range		±30V				
Impedano	ce	6kΩ				
Input thre	sholds	10.0V ±0.8V				
Operating	g as an output					
Open coll	ector outputs selected	Pr 8.30				
Nominal r	maximum output current	200mA (total including terminal 22)				
Maximum	output current	240mA (total including terminal 22)				
Common	Common to all modes					
Voltage ra	ange	0V to +24V				
Sample /	Update period	250µs when configured as an input with destinations as Pr 6.35 or Pr 6.36. 600µs when configured as an input with destination as Pr 6.29. 4ms in all other cases.				

27	Digital Input 4				
28	Digital Input 5				
29	Digital Input 6				
Termina	l 27 default function	FIRE MODE ACTIVATE input			
Termina	erminal 28 default function Analog INPUT 1 / INPUT 2 select				
Terminal 29 default function		Unassigned input			
Туре		Negative or positive logic digital inputs			
Logic m	ode controlled by	Pr 8.29			
Voltage	range	0V to +24V			
Absolute maximum applied voltage range		±30V			
Impedance		6kΩ			
Input thresholds		10.0V ±0.8V			
Sample / Update period		250μs with destinations as Pr 6.35 or Pr 6.36 . 600μs with destination as Pr 6.29 . 4ms in all other cases.			

30	0V common	
Functi	on	Common connection for all external devices

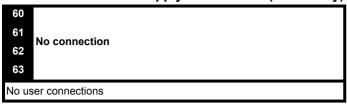
31	Drive enable			
Туре		Positive logic only digital input		
Voltage	range	0V to +24V		
Absolute maximum applied voltage		±30V		
Thresholds		15.5V ±2.5V		
Respons	se time	Nominal: 8ms Maximum: 20ms		


41 42	Relay contacts							
Default	function	Drive OK indicator						
Contact v	oltage rating	240Vac, Installation over-voltage category II						
Contact r	maximum current rating	2A AC 240V 4A DC 30V resistive load 0.5A DC 30V inductive load (L/R = 40ms)						
Contact r rating	minimum recommended	12V 100mA						
Contact t	уре	Normally open						
Default c	ontact condition	Closed when power applied and drive OK						
Update p	eriod	4ms						

Building automation network 4.14 connections

35	Previous node A(+)	
36	Previous node B (-)	
37	Isolated ground	
38	Next node A(+)	
39	Next node B(-)	
		Shielded twisted pair
		Characteristic impedance: 100 to 130 Ω
Cable specification		Capacitance between conductors: <100 pF
		Maximum length: 1200m with AWG 18 cable
Termination resistor		120 Ω

Figure 4-37 **Multi-drop connection**



4.15 Heatsink fan supply connections (size 4 to 6)

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10010	parameters	Data	Diagnostics	Information

Heatsink fan supply connections (size 6 only) 4.15.1

64 OV							
24V heatsink fan supply							
Function	To provide the power supply to the heatsink mounted fan						
Nominal voltage	24Vdc						
Minimum continuous operating voltage	23.5V						
Maximum continuous operating voltage	27V						
Current consumption	3.3A						
Recommended power supply	24V, 100W, 4.5A						
Recommended fuse	4A fast blow (l ² t less than 20A ² s)						

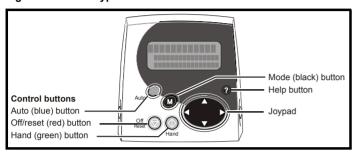
0.61			F1 11 1	0 441				OLIA DECA DE					10 11 0
Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

5 Getting Started

This chapter introduces the user interfaces, menu structure and security level of the drive.

5.1 Understanding the display

There is one keypad available for the Affinity. The BA-Keypad has an LCD display and is installed on the drive as standard.


5.1.1 BA-Keypad (LCD)

The display consists of three lines of text.

The top line shows the drive status or the current menu and parameter number being viewed on the left, and the parameter value or the specific trip type on the right.

The lower two lines show the parameter name or the help text.

Figure 5-1 BA-Keypad

The red off button is also used to reset the drive.

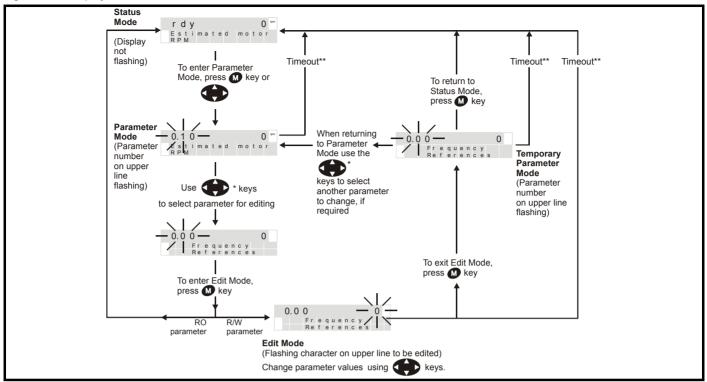
The Keypad can indicate when a SMARTCARD access is taking place or when the second motor map is active (menu 21). These are indicated on the displays as follows.

	Keypad
SMARTCARD access taking place	The symbol 'CC' will appear in the lower left hand corner of the display
Second motor map active	The symbol 'Mot2' will appear in the lower left hand corner of the display

5.2 Keypad operation

5.2.1 Control buttons

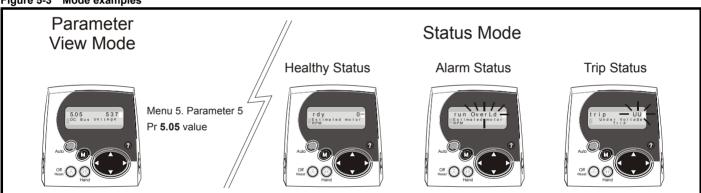
The keypad consists of:


- 1. Joypad used to navigate the parameter structure and change parameter values.
- 2. Mode button used to change between the display modes parameter view, parameter edit, status.
- 3. Three control buttons used to select Hand / Off / Auto modes
- 4. Help button displays text briefly describing the selected parameter.

The Help button toggles between other display modes and parameter help mode. The up and down functions on the joypad scroll the help text to allow the whole string to be viewed. The right and left functions on the joypad have no function when help text is being viewed.

Affinity User Guide

UL Listing SMARTCARE Optimization PC tools Diagnostics Information Information Installation Installation parameters the moto operation parameters Data Information


Figure 5-2 Display modes

^{*} can only be used to move between menus if L2 access has been enabled (Pr 0.49). Refer to section 5.10 on page 90. **Timeout defined by Pr 11.41 (default value = 240s).

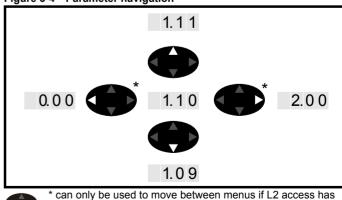
Figure 5-3 Mode examples

Do not change parameter values without careful consideration; incorrect values may cause damage or a safety hazard.

NOTE

When changing the values of parameters, make a note of the new values in case they need to be entered again.

For new parameter-values to apply after the AC supply to the drive is interrupted, new values must be saved. Refer to section 5.8 Saving parameters on page 90.


5.3 Menu structure

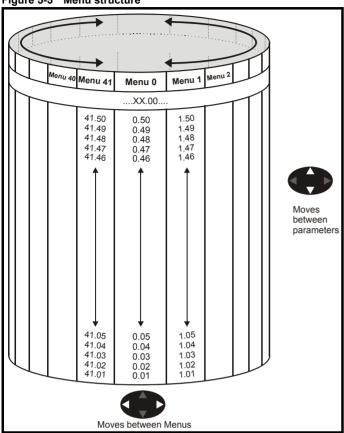
The drive parameter structure consists of menus and parameters.

The drive initially powers up so that only menu 0 can be viewed. The up and down arrow buttons are used to navigate between parameters and once level 2 access (L2) has been enabled (see Pr 0.49) the left and right buttons are used to navigate between menus. For further

information, refer to section 5.10 Parameter access level and security on page 90.

Figure 5-4 Parameter navigation

been enabled (Pr 0.49). Refer to section 5.10 Parameter access level and security on page 90.

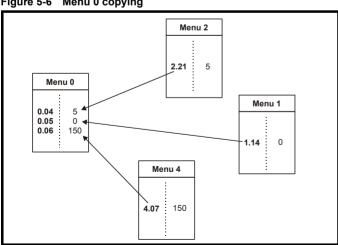

The menus and parameters roll over in both directions.

Electrical SMARTCARD **UL** Listing Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the moto operation parameters Data Information

i.e. if the last parameter is displayed, a further press will cause the display to rollover and show the first parameter.

When changing between menus the drive remembers which parameter was last viewed in a particular menu and thus displays that parameter.

Figure 5-5 Menu structure


5.4 Menu 0

Menu 0 is used to bring together various commonly used parameters for basic easy set up of the drive.

Appropriate parameters are copied from the advanced menus into menu 0 and thus exist in both locations.

For further information, refer to Chapter 6 Basic parameters on page 94.

Figure 5-6 Menu 0 copying

5.5 **Advanced menus**

The advanced menus consist of groups or parameters appropriate to a specific function or feature of the drive.

Table 5-1 Advanced menu descriptions

Menu	Description
0	Commonly used basic set up parameters for quick / easy
Ŭ	programming
1	Frequency / speed reference
2	Ramps
3	Slave frequency, speed feedback and speed control
4	Torque and current control
5	Motor control
6	Sequencer and clock
7	Analog I/O
8	Digital I/O
9	Programmable logic, motorized pot and binary sum
10	Status and trips
11	General drive set-up
12	Threshold detectors and variable selectors
14	User PID controller
15, 16	Solutions Module set-up
17	Building automation network
18	Application menu 1
19	Application menu 2
20	Application menu 3
21	Second motor parameters
22	Additional Menu 0 set-up
40	Keypad configuration menu
41	User filter menu

5.5.1 Keypad set-up menus

Table 5-2 Menu 40 parameter descriptions

	Parameter	Range(ℚ)		
40.00	Parameter 0	0 to 32767		
40.01	Language selection	English (0), Custom (1), French (2), German (3), Spanish (4), Italian (5)		
40.02	Software version	999999		
40.03	Save to flash	Idle (0), Save (1), Restore (2), Default (3)		
40.04	LCD contrast	0 to 31		
40.05	Drive and attribute database upload was bypassed	Updated (0), Bypass (1)		
40.06	Browsing favourites control	Normal (0), Filter (1)		
40.07	Keypad security code	0 to 999		
40.08	Communication channel selection	Disable (0), Slot1 (1), Slot2 (2), Slot3 (3), Slave (4), Direct (5)		
40.09	Hardware key code	0 to 999		
40.10	Drive node ID (Address)	0 to 255		
40.11	Flash ROM memory size	4Mbit (0), 8Mbit (1)		
40.18	Assistance on action threshold parameter	0 to 499.99		
40.19	String database version number	0 to 999999		
40.20	Screen saver strings and enable	None (0), Default (1), User (2)		
40.21	Screen saver interval	0 to 600		
40.22	Turbo browse time interval	0 to 200ms		

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontingination	SMARTCARD	DC to ala	Advanced	Technical	Diamontina	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

Table 5-3 Menu 41 parameter descriptions

	Parameter	Range(३)
41.00	Parameter 0	0 to 32767
41.01 to 41.50	Browsing filter source F01 to F50	Pr 0.00 to Pr 391.51
41.51	Browsing favourites control	Normal (0), Filter (1)

5.5.2 Display messages

The following tables indicate the various possible mnemonics which can be displayed by the drive and their meaning.

Trip types are not listed here but can be found in Chapter 6 Basic parameters on page 94 if required.

Table 5-4 Alarm indications

Lt

flash 'PLC' once every 10s.

Lower display	Description					
br.rS	Braking resistor overload					
	· I ² t accumulator (Pr 10.37) in the drive has reached llue at which the drive will trip and the braking IGBT is					
Hot	Heatsink or control board or inverter IGBT over temperature alarms are active					
	 The drive heatsink temperature has reached a threshold and the drive will trip 'Oh2' if the temperature continues to rise (see the 'Oh2' trip). 					
or						
	nt temperature around the control PCB is approaching inperature threshold (see the 'O.CtL' trip).					
OVLd	Motor overload					
The motor I^2t accumulator in the drive has reached 75% of the value at which the drive will be tripped and the load on the drive is >100%						
	Autotune in progress rocedure has been initialised. 'Auto' and 'tunE' will flash the display.					

Indicates that a limit switch is active and that it is causing the motor to

be stopped (i.e. forward limit switch with forward reference etc.)

Onboard PLC program is running An Onboard PLC program is installed and running. The display will

Limit switch is active

Table 5-5 Status indications

Table 5-5 Status indications							
Upper display	Description	Drive output stage					
ACUU	AC Supply loss						
The drive has of lost and is attention by decelerating	Enabled						
Auto	Auto mode	Enabled					
The drive is rur	nning in Auto mode	Enabled					
dc	DC applied to the motor	Enabled					
The drive is ap	plying DC injection braking.	Enabled					
dEC	Decelerating	Enabled					
The drive is de	celerating the motor.	Lilabled					
Hand	Hand mode	Enabled					
The drive is rur	nning in Hand mode	Lilabled					
Heat	Motor pre-heat	Enabled					
Motor pre-heat	active	Lilabica					
inh The drive is inh	Inhibit ibited and cannot be run.	Disabled					
The drive enab Pr 6.15 is set to	le signal is not applied to terminal 31 or o 0.	Disabled					
Off	Drive is stopped	Disabled					
Drive is stoppe	d	Disabled					
run	Drive running						
Drive is running disabled	g with Hand / Off / Auto functions	Enabled					
rdY	Ready	Disabled					
The drive is rea		Biodbiod					
StoP	Stop or holding zero speed	Enabled					
	ding zero speed.	2					
triP	Trip condition						
	ripped and is no longer controlling the code appears on the right hand side of he display.	Disabled					

Table 5-6 Solutions Module and SMARTCARD status indications on power-up

Lower display	Description
boot	

A parameter set is being transferred from the SMARTCARD to the drive during power-up. For further information, please refer to section 9.2.4 Booting up from the SMARTCARD on every power up (Pr 11.42 = boot (4)) on page 121.

cArd

The drive is writing a parameter set to the SMARTCARD during power-

For further information, please refer to section 9.2.3 Auto saving parameter changes (Pr 11.42 = Auto (3)) on page 120.

loAding

The drive is writing information to a Solutions Module.

Safety Information Installation Installation

5.6 Changing the operating mode

Changing the operating mode returns all parameters to their default value, including the motor parameters. (Pr **0.49** Security status and Pr **0.34** User security code are not affected by this procedure.)

Procedure

Use the following procedure only if a different operating mode is required:

- Ensure the drive is not enabled, i.e. terminal 31 is open or Pr 6.15 is Off (0)
- Enter either of the following values in Pr xx.00, as appropriate: 1253 (EUR, 50Hz AC supply frequency) 1254 (USA, 60Hz AC supply frequency)
- 3. Change the setting of Pr 0.48 as follows:

The figures in the second column apply when serial communications are used.

- 4 Fither
- Press the red reset button
- · Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.38 to 100 (ensure that Pr. xx.00 returns to 0).

NOTE

Entering 1253 or 1254 in Pr xx.00 will only load defaults if the setting of Pr 0.48 has been changed.

5.7 Changing the keypad mode

The keypad mode can be selected for Hand, Off or Auto by using the keypad buttons

- · Blue Auto
- Red Off
- Green Hand

In Hand mode, the motor speed is adjusted by pressing the keypad up/ down arrow buttons. If Hand mode is selected from Auto mode then the transition is bumpless, so the motor speed will not change.

In Auto mode, the motor speed control reference is determined by the value set in the speed/frequency reference selector Pr **0.05**.

In Off mode, the motor will be stopped but pressing the keypad up/down arrow buttons will allow the keypad control reference Pr 1.17 to be adjusted. Selecting Hand mode will then ramp the motor up to the selected speed.

5.8 Saving parameters

When changing a parameter in Menu 0, the new value is saved when pressing the Mode button to return to parameter view mode from parameter edit mode.

If parameters have been changed in the advanced menus, then the change will not be saved automatically. A save function must be carried out.

Procedure

Enter 1000* in Pr. xx.00

Either:

- Press the red reset button
- · Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.38 to 100 (ensure that Pr. xx.00 returns to 0).

*If the drive is in the under voltage trip state or is being supplied from a low voltage DC supply, a value of 1001 must be entered into Pr **xx.00** to perform a save function.

5.9 Restoring parameter defaults

Restoring parameter defaults by this method saves the default values in the drive's memory. (Pr **0.49** and Pr **0.34** are not affected by this procedure.)

Procedure

- Ensure the drive is not enabled, i.e. terminal 31 is open or Pr 6.15 is Off (0)
- Enter 1233 (EUR 50Hz settings) or 1244 (USA 60Hz settings) in Pr xx.00.
- 3. Either:
- Press the red reset button
- · Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.38 to 100 (ensure that Pr. xx.00 returns to 0).

5.10 Parameter access level and security

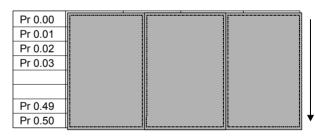
The parameter access level determines whether the user has access to menu 0 only or to all the advanced menus (menus 1 to 22) in addition to menu 0.

The User Security determines whether the access to the user is read only or read write.

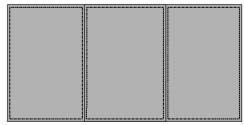
Both the User Security and Parameter Access Level can operate independently of each other as shown in the table below:

Parameter Access Level	User Security	Menu 0 status	Advanced menus status
L1	Open	RW	Not visible
L1	Closed	RO	Not visible
L2	Open	RW	RW
L2	Closed	RO	RO

RW = Read / write access


RO = Read only access

The default settings of the drive are Parameter Access Level L1 and user Security Open, i.e. read / write access to Menu 0 with the advanced menus not visible.


5.10.1 Access Level

The access level is set in Pr **0.49** and allows or prevents access to the advanced menu parameters.

L1 access selected - Menu 0 only visible

L2 access selected - All parameters visible

Pr 0.00	Pr 1.00	 Pr 21.00	Pr 22.00
Pr 0.01	Pr 1.01	 Pr 21.01	Pr 22.01
Pr 0.02	Pr 1.02	 Pr 21.02	Pr 22.02
Pr 0.03	Pr 1.03	 Pr 21.03	Pr 22.03
Pr 0.49	Pr 1.49	 Pr 21.30	Pr 22.28
Pr 0.50	Pr 1.50	 Pr 21.31	Pr 22.29

Safety Optimization PC tools Diagnostics Information Information Installation Installation parameters the moto operation parameters Information

5.10.2 Changing the Access Level

The Access Level is determined by the setting of Pr 0.49 as follows:

String	Value	Effect
L1	0	Access to menu 0 only
L2	1	Access to all menus (menu 0 to menu 22)

The Access Level can be changed through the keypad even if the User Security has been set.

5.10.3 **User Security**

The User Security, when set, prevents write access to any of the parameters (other than Pr. 0.49 and Pr 11.44 Access Level) in any menu.

User security open - All parameters: Read / Write access

Pr 0.00	Pr 1.00	 Pr 21.00	Pr 22.00
Pr 0.01	Pr 1.01	 Pr 21.01	Pr 22.01
Pr 0.02	Pr 1.02	 Pr 21.02	Pr 22.02
Pr 0.03	Pr 1.03	 Pr 21.03	Pr 22.03
Pr 0.49	Pr 1.49	 Pr 21.30	Pr 22.28
Pr 0.50	Pr 1.50	 Pr 21.31	Pr 22.29

User security closed - All parameters: Read Only access (except Pr 0.49 and Pr 11.44)

Pr 0.00	Pr 1.00		Pr 21.00	Pr 22.00
Pr 0.01 /	, Pr 1.01	/.	Pr 21.01	Pr 22.01
Pr 0.02/	Pr 1.02	//	Pr 21.02	Pr 22.02
Pr 0.03/	Pr 1.03	//	Pr 21.03	Pr 22.03
/		//		//
	,	.//		//
Pr 0.49	Pr 1.49	/	Pr 21.30	/Pr 22.28
Pr 0.50	Pr 1.50		Pr 21.31	Pr 22.29

Setting User Security

Enter a value between 1 and 999 in Pr **0.34** and press the **M** button; the security code has now been set to this value. In order to activate the security, the Access level must be set to Loc in Pr 0.49. When the drive is reset, the security code will have been activated and the drive returns to Access Level L1. The value of Pr 0.34 will return to 0 in order to hide the security code. At this point, the only parameter that can be changed by the user is the Access Level Pr 0.49.

Unlocking User Security

Select a read write parameter to be edited and press the **M** button, the display will now show CodE. Use the arrow buttons to set the security code and press the M button.

With the correct security code entered, the display will revert to the parameter selected in edit mode.

If an incorrect security code is entered the display will revert to parameter view mode.

To lock the User Security again, set Pr 0.49 to Loc and press the reset button.

Disabling User Security

Unlock the previously set security code as detailed above. Set Pr 0.34 to 0 and press the button. The User Security has now been disabled. and will not have to be unlocked each time the drive is powered up to allow read / write access to the parameters.

5.11 Displaying parameters with nondefault values only

By entering 12000 in Pr xx.00, the only parameters that will be visible to the user will be those containing a non-default value. This function does not require a drive reset to become active. In order to deactivate this function, return to Pr xx.00 and enter a value of 0.

Please note that this function can be affected by the access level enabled, refer to section 5.10 Parameter access level and security for further information regarding access level.

5.12 Displaying destination parameters only

By entering 12001 in Pr xx.00, the only parameters that will be visible to the user will be destination parameters. This function does not require a drive reset to become active. In order to deactivate this function, return to Pr xx.00 and enter a value of 0.

Please note that this function can be affected by the access level enabled, refer to section 5.10 Parameter access level and security for further information regarding access level.

5.13 Communications

5.13.1 Introduction

The Affinity has a PC communications interface and a Building Automation Network interface. The PC communications interface enables all drive set-up, operation and monitoring to be carried out with a PC or controller if required. Therefore, it is possible to control the drive entirely by serial communications without the need for a BA-keypad or other control cabling. The PC communications interface supports two protocols selected by parameter configuration:

- Modbus RTU
- CT ANSI

Modbus RTU has been set as the default protocol, as it is used with the PC-tools commissioning/start-up software as provided on the CD ROM.

The PC communications port of the drive is a RJ45 socket, which is isolated from the power stage and the other control terminals (see section 4.12 PC communications connections on page 80 for connection and isolation details)

The communications port applies a 2 unit load to the communications network.

USB/EIA232 to EIA485 Communications

An external USB/EIA232 hardware interface such as a PC cannot be used directly with the 2-wire PC communications interface of the drive. Therefore a suitable converter is required.

Suitable USB to EIA485 and EIA232 to EIA485 isolated converters are available from Control Techniques as follows:

- CT USB Comms cable (CT Part No. 4500-0096)
- CT EIA232 Comms cable (CT Part No. 4500-0087)

When using one of the above converters or any other suitable converter with the Affinity, it is recommended that no terminating resistors be connected on the network. It may be necessary to 'link out' the terminating resistor within the converter depending on which type is used. The information on how to link out the terminating resistor will normally be contained in the user information supplied with the converter.

The Building Automation Network enables connection to a building automation system using the following protocols:

- Modbus RTU slave
- **BACnet**
- Metasys N2

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

5.13.2 Building automation network communications set-up parameters

	17.	03	MAC/I	Node A	ddress	3				
R۷	Ν	Uni							US	
Û	0 to 65535		\Rightarrow		1					

			Allowable	MAC Address	Values
	Protocol	Master/ Slave	Minimum	Maximum	Broadcast
1	Modbus RTU	Slave	1	247	0
ĺ	BACnet	Master	0	127	255
1	Metasys N2	Slave	1	255	0

If a MAC address is selected that is greater than that allowed by the currently selected protocol then the actual address used will be the maximum valid address value.

*The Affinity drive is a BACnet master device and as such will instigate I-Am messages onto the BACnet network. These messages allow other BACnet master devices to determine the capabilities of the Affinity drive.

	17.	04	Baud	rate						
RV	Ν	Uni							US	
\mathfrak{D}		0 to 127		\Rightarrow		0				

This selects the baud rate used for network communication.

Pr 17.04 value	Baud rate (bps)
0	Protocol default value (see table below)
1	1200
2	2400
3	4800
4	9600
5	19200
6	38400
7	57600
8	76800
>8	Protocol default value (see table below)

The default value when Pr 17.04 is set to 0 or >8 is as follows:

Protocol	Default baud rate (bps)
Modbus RTU	9600
BACnet	19200
Metasys N2	9600

	17.	05	Building Automation Network protocol											
R۱	Ν	Uni								US				
Û	0 to 65535					\Rightarrow			0					

This selects the protocol used for the Building Automation Network as follows:

17.05	Protocol
0	Disabled
1	Modbus RTU
2	BACnet
3	Metasys N2

If a value greater than 2 is entered for Pr **17.05** then the Building Automation Network is disabled.

	17.	10	Device	e Obje	ct Iden	tifie	r			
R۱	Ν	Bi							US	
$\hat{\mathbf{v}}$	-32767 to 32767					\Diamond		0		

BACnet

If this parameter is zero then the MAC/Node address selected in Pr xx.03 will be used as the object identifier for the BACnet device; otherwise the device object identifier will be the value specified here.

If the node address is also set to zero then the Device Object Identifier value will be set to 1.

	17.	38	Data f	ormat						
R۱	W Uni								US	
Û	0 to 255					\Diamond		0		

This selects the data transmission format used for the selected protocol.

17.38		Descr	iption				
17.30	Start bits	Data bits	Parity	Stop bits			
0	Proto	col default valu	ue (see table	below)			
1	1	8	None	1			
2	1	8	None	2			
3	1	8	Even	1			
4	1	8	Odd	1			
>4	Protocol default value (see table below)						

The default value when Pr 17.38 is set to 0 or >4 is as follows:

Protocol		Description											
Piotocoi	Start bits	Data bits	Parity	Stop bits									
Modbus RTU	1	8	None	2									
BACnet	1	8	None	1									
Metasys N2	1	8	None	1									

5.13.3 PC communications set-up parameters

The following parameters need to be set according to the system requirements.

0.35	{1	1.24}	PC comms mode										
RW	/	Txt								US			
Û	AnSI (0) rtU (1)					\Rightarrow			rtU (1	1)			

This parameter defines the communications protocol used by the 485 comms port on the drive. This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original protocol. The master should wait at least 20ms before send a new message using the new protocol. (Note: ANSI uses 7 data bits, 1 stop bit and even parity; Modbus RTU uses 8 data bits, 2 stops bits and no parity.)

Comms value	String	Communications mode
0	AnSI	ANSI
1	rtU	Modbus RTU protocol
2	Lcd	Modbus RTU protocol, but with an Keypad only

ANSIx3.28 protocol

Full details of the CT ANSI communications protocol are the *Advanced User Guide*.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

Modbus RTU protocol

Full details of the CT implementation of Modbus RTU are given in the Advanced User Guide.

Modbus RTU protocol, but with an Keypad only

This setting is used for disabling communications access when the BA-Keypad is used as a hardware key. See the Advanced User Guide for more details.

Ī	0.3	6 {1	1.25}	PC co	mms b	aud ra	te				
	R۷	٧	Txt							US	
	\$	24	300 (0), 400 (3), 1920(57600	4800 (0 (6), 3	4), 960 8400 (7	00 (5), 7),	↔		19200	(6)	

^{*} only applicable to Modbus RTU mode

This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original baud rate. The master should wait at least 20ms before sending a new message using the new baud rate.

NOTE

When using the CT EIA232 Comms cable the available baud rate is limited to 19.2k baud.

0.3	0.37 {11.23} PC comms address												
RV	Ν	Txt								US			
Û			0 to 2	47		\Rightarrow			1				

Used to define the unique address for the drive for the serial interface. The drive is always a slave.

Modbus RTU

When the Modbus RTU protocol is used addresses between 0 and 247 are permitted. Address 0 is used to globally address all slaves, and so this address should not be set in this parameter

ANSI

When the ANSI protocol is used the first digit is the group and the second digit is the address within a group. The maximum permitted group number is 9 and the maximum permitted address within a group is 9. Therefore, Pr **0.37** is limited to 99 in this mode. The value 00 is used to globally address all slaves on the system, and x0 is used to address all slaves of group x, therefore these addresses should not be set in this parameter.

<u>93</u> Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

6 Basic parameters

Menu 0 is used to bring together various commonly used parameters for basic easy set up of the drive. All the parameters in menu 0 appear in other menus in the drive (denoted by $\{...\}$).

Menus 11 and 22 can be used to change most of the parameters in menu 0. Menu 0 can also contain up to 59 parameters by setting up menu 22.

Single line descriptions 6.1

			Rang	ıe(û)	Default(⇔)		
	Parameter		OL	RFC	OL	RFC	
0.00	xx.00	{x.00}	0 to 3	2,767		0	
0.01	Minimum reference clamp	{1.07}	±3,000.0Hz	±SPEED_LIMIT_ MAX Hz/rpm	(0.0	
0.02	Maximum reference clamp	{1.06}	0 to 3,000.0Hz	SPEED_LIMIT_ MAX Hz/rpm	EUR> 50.0 USA> 60.0	EUR> 1,500.0 USA> 1800.0	
0.03	Acceleration rate	{2.11}	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	EUR> 40.0 USA> 33.3	EUR> 13.333 USA> 11.111	
0.04	Deceleration rate	{2.21}	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	EUR> 40.0 USA> 33.3	EUR> 13.333 USA> 11.111	
0.05	Reference select	{1.14}	A1.A2 (0), A1.Pr (1), A2.Pr			A2 (0)	
0.06	Current limit	{4.07 }	0 to CURRENT	_LIMIT_MAX %		110	
0.07	OL> Voltage mode select	{5.14}	Ur_S (0), Ur (1), Fd (2), Ur_Auto (3), Ur_I (4), SrE (5)		Fd (2)		
	RFC> Speed controller P gain	{3.10}		0.0000 to 6.5535 1/rad s ⁻¹		0.0300	
0.08	OL> Voltage boost	{5.15}	0.0 to 25.0% of motor rated voltage		Size 1 to 3: 3.0 Size 4 & 5: 2.0 Size 6: 1.0		
	RFC> Speed controller I gain	{3.11}		0.00 to 655.35 1/rad		0.10	
0.09	OL> Dynamic V/F	{5.13}	OFF (0) or On (1)	0.00000	OFF (0)		
0.09	RFC> Speed controller D gain	{3.12}	100 000	0.00000 to 0.65535 (s)		0.00000	
0.10	OL> Estimated motor speed RFC> Motor speed	{5.04} {3.02}	±180,000 rpm	LCDEED MAY rom			
0.11	Drive output frequency	{5.02} {5.01}	±SPEED FREQ MAX Hz	±SPEED_MAX rpm ±1250 Hz			
0.11	Total motor current	{4.01}	0 to DRIVE CU				
0.13	Percentage load	{4.20}	±USER_CURF	_			
0.14	Ramp mode select	FASt (0) Std (1) Std.hV (2)	FASt (0) Std (1)	St	d (1)		
0.15	Sleep/wake threshold	{6.53}	±SPEED_FREG			0.0	
0.16	Sleep/wake delay time	{6.54}	0.0 to 2		1	0.0	
0.17	RFC> Current demand filter 1	{4.12 }		0.0 to 25.0 ms		0.0	
0.18	Spin start boost	{5.40}	0.0 to		1.0		
0.19	Analog input 2 mode	{7.11 }	0-20 (0), 20-0 (1), 4 4-20 (4), 20-4	(5), VOLt (6)		20 (4)	
0.20	Analog input 2 destination	{7.14}	Pr 0.00 to		Pr	1.37	
0.21	Analog input 3 mode	{7.15}	0-20 (0), 20-0 (1), 4 4-20 (4), 20-4 (5), \text{ th (8), th}		VC	PLt (6)	
0.22	Date	{6.16 }	0 to 3				
0.23	Time	{6.17}	0.00 to				
0.24	Date/Time selector	{6.19}	0 to		EUD: 044 (0	3	
0.25 0.26	Date format Low load detection level	{6.20} {4.27}	Std (0), Std.ds (1), 0.0 to 1), USA> US (2) 0.0	
0.27	Low load detection speed / frequency threshold	{4.28}	0.0 to +SPEED_FF			0.0	
0.28	Trip on abnormal load detection	{4.29}	OFF (0)	or On (1)	OF	FF (0)	
0.29	SMARTCARD parameter data	{11.36}	0 to	999		0	
0.30	Parameter cloning	{11.42}	nonE (0), rEAd (1), Pro		noi	1E (0)	
0.31	Drive rated voltage	{11.33}		575 (2), 690 (3) V			
0.32	Drive current scaling	{11.32}	0.00 to 9				
0.33	Catch a spinning motor	(6.09)	0 to 3	0 to 1	0	1	
0.34	User security code PC comms mode	{11.30}	0 to			0 J (1)	
0.36	PC comms baud rate	{11.24} {11.25}	AnSI (0), rtL 300 (0), 600 (1), 1 4800 (4), 9600 (5), 1 57600 (8) Mod 115200 (9) Mo	200 (2), 2400 (3), 9200 (6), 38400 (7), Ibus RTU only, dbus RTU only	19200 (6)		
0.37	PC comms address	{11.23}	0 to		1		
0.38	Hold zero speed / Motor pre-heat enable	{6.08}	OFF (0)		OFF (0)		
0.39	Motor pre-heat current magnitude	{6.52}	0 to 1		0		
0.40	Autotune	{5.12}	0 to 2	0 to 4	0		

	Parameter		Rang	je(ŷ)	Defa	ault(⇨)			
	Tarameter	Ī	OL	RFC	OL	RFC			
0.41	Maximum switching frequency	{5.18}	3 (0), 4 (1), 6 (2), 8 (3), 12 (4), 16 (5) kHz	;	3 (0)			
0.42	No. of motor poles	{5.11}	0 to 60 (Auto	to 120 pole)	0	(Auto)			
0.43	Motor rated power factor	{5.10}	0.000 t	o 1.000	C	.850			
0.44	Motor rated voltage	{5.09}	0 to AC_VOLTAG	GE_SET_MAX V	200V drive: 230 400V drive: EUR> 400, USA> 460 575V drive: 575 690V drive: 690				
0.45	Motor rated full load speed (rpm)	{5.08}	0 to 180,000 rpm	0.00 to 40,000.00 rpm	EUR> 1,500 EUR> 1,4 USA> 1,800 USA> 1,7				
0.46	Motor rated current	{5.07}	0 to RATED_CU	RRENT_MAX A	Drive rated current [11.32]				
0.47	Rated frequency	{5.06}	0 to 3,000.0 Hz	0 to 1,250.0 Hz	EUR> 50.0 USA> 60.0				
0.48	Operating mode selector	{11.31}	OPEn LP (1), RFC (2),	OPEn LP (1)	RFC (2)			
0.49	Security status	{11.44}	L1 (0), L2	(1), Loc (2)					
0.50	Software version	{11.29}	1.00 to	99.99					
0.51	Positive logic select	{8.29}	OFF (0)	or On (1)	C	n (1)			
0.52	Timer 1 start date	{9.35}	0 to 3	11299		0			
0.53	Timer 1 start time	{9.36}	0.00 to	23.59		0.00			
0.54	Timer 1 stop date	{9.37}	0 to 3	11299	0				
0.55	Timer 1 stop time	{9.38}	0.00 to	23.59	0.00				

0 to 6

OFF (0) or On (1)

Pr **0.00** to Pr **50.99**

Running Optimization SMARTCARD PC tools Advanced Technical Diagnostics UL Listing

0

OFF (0)

Pr **0.00**

Key:

0.56

0.57

0.58

Timer 1 repeat function

Timer 1 enable

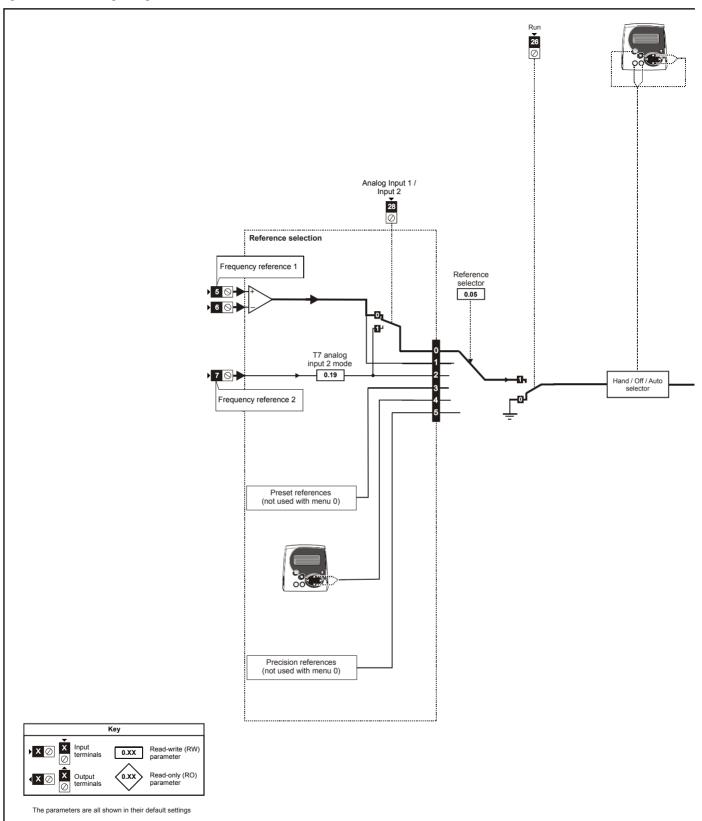
Timer 1 destination

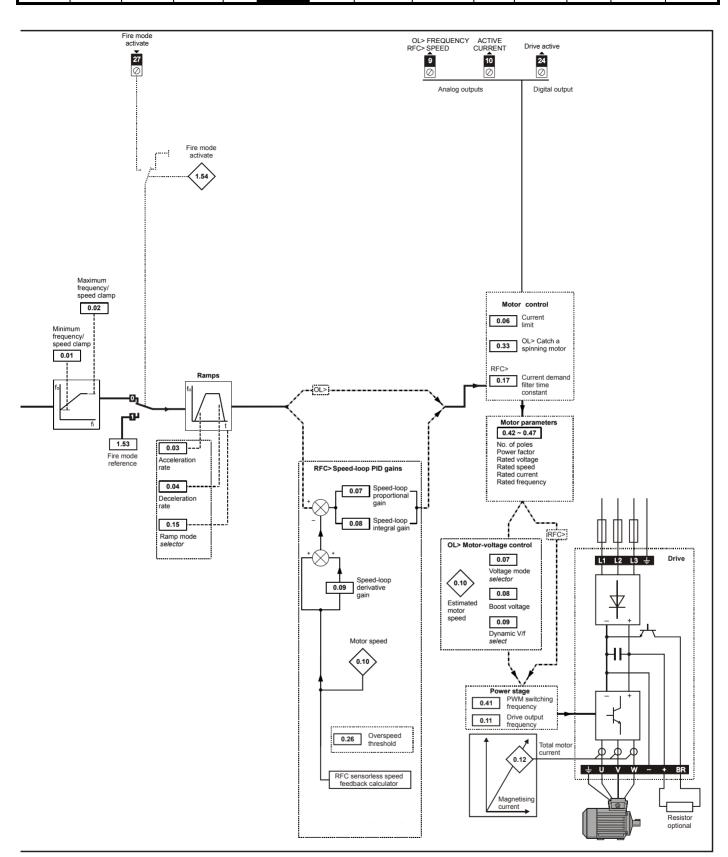
Coding	Attribute
OL	Open loop
RFC	RFC mode

Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved

{9.39}

{9.40}


{9.43}


Electrical Getting

Basic

Product Information Electrical Installation Getting Started Running the motor Technical Data UL Listing Information Safety Mechanical Basic SMARTCARD Advanced Optimization PC tools Diagnostics Information Installation parameters operation parameters

Figure 6-1 Menu 0 logic diagram

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostico	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

6.2 **Full descriptions**

6.2.1 Parameter x.00

0.0	00 {	x.00}	Param	eter z	ero				
R۷	RW Uni								
Û	0 to 32,767			$\qquad \qquad $		0			

Pr x.00 is available in all menus and has the following functions.

Value	Action
1000	Save parameters when under voltage is not active (Pr 10.16
	= 0) and low voltage DC supply is not active (Pr 6.44 = 0).
1001	Save parameters under all conditions
1070	Reset all option modules
1233	Load standard defaults
1244	Load US defaults
1253	Change drive mode with standard defaults
1254	Change drive mode with US defaults
1255	Change drive mode with standard defaults (excluding menus 15 to 20)
1256	Change drive mode with US defaults (excluding menus 15 to 20)
2001*	Transfer drive parameters as difference from default to a bootable SMARTCARD block in data block number 001
Зууу*	Transfer drive EEPROM data to a SMART Card block number yyy
4yyy*	Transfer drive data as difference from defaults to SMART Card block number yyy
5yyy*	Transfer drive ladder program to SMART Card block number yyy
6ууу*	Transfer SMART Card data block number yyy to the drive
7yyy*	Erase SMART Card data block number yyy
8ууу*	Compare drive parameters with SMART Card data block number yyy
9555*	Clear SMARTCARD warning suppression flag
9666*	Set SMARTCARD warning suppression card
9777*	Clear SMARTCARD read-only flag
9888*	Set SMARTCARD read-only flag
9999*	Erase SMARTCARD data block 1 to 499
12000**	Display non-default values only
12001**	Display destination parameters only

^{*} See Chapter 9 SMARTCARD operation on page 119 for more information of these functions.

Speed limits 6.2.2

0.0	0.01 {1.07} Minimum reference						ımp	ı			
R۱	Ν	Bi							PT	US	
OL	Û		±3,000.0Hz						0.0		
RFC	Û	±SPEE	±SPEED_LIMIT_MAX Hz/rpr						0.0		

(When the drive is jogging, [0.01] has no effect.)

Open-loop

Set Pr 0.01 at the required minimum output frequency of the drive for both directions of rotation. The drive speed reference is scaled between Pr 0.01 and Pr 0.02. [0.01] is a nominal value; slip compensation may cause the actual frequency to be higher.

RFC

Set Pr 0.01 at the required minimum motor speed for both directions of rotation. The drive speed reference is scaled between Pr 0.01 and Pr 0.02.

0	.02	{1.06}	Maxin	num re	ferenc	ес	clamp
F	RW	Uni				US	
OL	- Û		0 to 3,0	0 to 3,000.0Hz			⇒ EUR> 50.0 USA> 60.0
RF	û	SPEE	EED_LIMIT_MAX Hz/rpm				EUR> 1,500.0 USA> 1,800.0

(The drive has additional over-speed protection.)

Set Pr 0.02 at the required maximum output frequency for both directions of rotation. The drive speed reference is scaled between Pr 0.01 and Pr 0.02. [0.02] is a nominal value; slip compensation may cause the actual frequency to be higher.

RFC

Set Pr 0.02 at the required maximum motor speed for both directions of rotation. The drive speed reference is scaled between Pr 0.01 and Pr 0.02.

For operating at high speeds see section 8.5 High speed operation on page 118.

6.2.3 Ramps, speed reference selection, current

0.0	03 {	2.11}	Accel	eratior	n rate					
R۱	Ν	Uni							US	
OL	Û	0.0 t	o 3,200	o 3,200.0 s/100Hz				EUR> 4 USA> 3		
RFC	Û	0.0	000 to 3,200.000 s/1,000rpm					UR> 13 ISA> 11		

Set Pr 0.03 at the required rate of acceleration.

Note that larger values produce lower acceleration. The rate applies in both directions of rotation.

0.	04 {	2.21}	Deceleration rate								
R	RW Uni									US	
OL	Û	0.0 t	o 3,200	3,200.0 s/100Hz					EUR> 4 USA> 3		
RFC	Û	0.0	0.000 to 3,200.000 s/1,000rpm						UR> 13 JSA> 11		

Set Pr 0.04 at the required rate of deceleration.

Note that larger values produce lower deceleration. The rate applies in both directions of rotation.

0.05 {1.14}			Refere	ence se	elector					
RW		Txt					NC		US	
Û			0 to	5		\Diamond		A1.A2	(0)	

Use Pr **0.05** to select the required frequency/speed reference as follows:

Settir	ng	
A1.A2	0	Analog input 1 OR analog input 2 selectable by digital input, terminal 28
A1.Pr	1	Analog input 1 OR preset frequency/speed selectable by digital input, terminal 28 and 29
A2.Pr	2	Analog input 2 OR preset frequency/speed selectable by digital input, terminal 28 and 29
Pr	3	Pre-set frequency/speed
PAd	4	Keypad reference
Prc	5	Precision reference

Setting Pr 0.05 to 1, 2 or 3 will re-configure T28 and T29. Refer to Pr 8.39 to disable this function.

^{**} These functions do not require a drive reset to become active. All other functions require a drive reset to initiate the function.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

0.0)6 {·	4.07}	Curre	nt Lim	it					
R۱	RW Uni					F	RA		US	
Û	RW Uni				ax %	\Rightarrow		110		

Pr **0.06** limits the maximum output current of the drive (and hence maximum motor torque) to protect the drive and motor from overload.

Set Pr **0.06** at the required maximum torque as a percentage of the rated torque of the motor, as follows:

$$[0.06] = \frac{T_R}{T_{RATED}} \times 100 \, (\%)$$

Where:

T_R Required maximum torque

TRATED Motor rated torque

Alternatively, set 0.06 at the required maximum active (torque-producing) current as a percentage of the rated active current of the motor, as follows:

$$[0.06] = \frac{I_R}{I_{RATED}} \times 100 \, (\%)$$

Where:

I_R Required maximum active current

I_{RATED} Motor rated active current

6.2.4 Voltage boost, (open-loop), Speed-loop PID gains (RFC)

0.0)7 {	5.14}	Voltag	je mod	le sele	ctor	•			
R۱	RW Txt Ltr S (0) Ltr (1) Ed (2)								US	
OL	Û	Ur_S Ur_	(0), Ui Auto (3 SrE		d (2), (4),	⇧		Fd (2)	

Open-loop

There are six voltage modes available, which fall into two categories, vector control and fixed boost. For further details, refer to section *Pr* 0.07 *{5.14} Voltage mode* on page 113.

	0.07 {	3.10}	Speed	d contr	oller p	rop	ortic	nal ga	in		
Γ	RW	Uni								US	
ı	RFC 1	0.	0.0000 to 6.5535 1/rad s ⁻¹		35	\Rightarrow			0.030	0	

RFC

Pr **0.07** (**3.10**) operates in the feed-forward path of the speed-control loop in the drive. See Figure 11-4 on page 144 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 8 *Optimization* on page 112.

0.	80	5.15}	Low f	requer	ıcy vol	tag	e bo	ost			
R'	W	Uni								US	
OL	OI 111 IOI			% of m		\Rightarrow	S	Size 4 &	ze 1 to 3 5: 2.0,		1.0

Open-loop

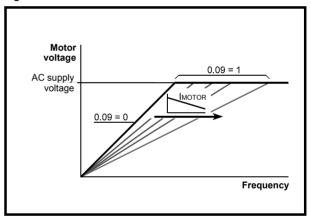
When **0.07** Voltage mode selector is set at **Fd** or **SrE**, set Pr **0.08** (5.15) at the required value for the motor to run reliably at low speeds.

Excessive values of Pr 0.08 can cause the motor to be overheated.

0.08 {	3.11}	Speed	l contr	oller ir	iteg	ıral (gain			
RW	Uni								US	
RFC 13		0.00 to 655.35 1/rad						0.10		

RFC

Pr **0.08** (**3.11**) operates in the feed-forward path of the speed-control loop in the drive. See Figure 11-4 on page 144 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 8 *Optimization* on page 112.


0.0	09 {	5.13}	Dynar	nic V/F	/ flux	opt	imiz	e selec	t		
R۱	RW Bit									US	
OL	Û	0	OFF (0) or On (1)						OFF (0)	

Open-loop

Set Pr 0.09 (5.13) at 0 when the V/f characteristic applied to the motor is to be fixed. It is then based on the rated voltage and frequency of the motor.

Set Pr **0.09** at 1 when reduced power dissipation is required in the motor when it is lightly loaded. The V/f characteristic is then variable resulting in the motor voltage being proportionally reduced for lower motor currents. Figure 6-2 shows the change in V/f slope when the motor current is reduced.

Figure 6-2 Fixed and variable V/f characteristics

0.0)9 {	3.12}	Speed	l contr	oller d	iffe	renti	ial feed	back g	ain	
R۱	N	Uni								US	
RFC (1) 0.0			000 to	0.6553	35(s)	\Box			0.0000	00	

RFC

Pr **0.09** (**3.12**) operates in the feedback path of the speed-control loop in the drive. See Figure 11-4 on page 144 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 8 *Optimization* on page 112.

6.2.5 Monitoring

0.1	0 {	5.04}	Estim	ated m	otor s	pee	d			
RO Bit			FI					NC	PT	
OL	L					\Rightarrow				

Open-loop

Pr **0.10** (**5.04**) indicates the value of motor speed that is estimated from the following:

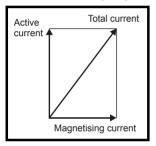
0.12 Post-ramp frequency reference

0.42 Motor - no. of poles

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
IIIIOIIIIalioii	IIIIOIIIIalioii	IIIStaliation	IIIStaliation	Starteu	parameters	tile illotoi		operation		parameters	Data		iiiioiiiialioi

0.1	10 {	3.02}	Motor	speed	i				
R	RO Bi FI						NC	PT	
RFC	Û	±S	Speed_	max rp	m	\Diamond			

RFC


Pr 0.10 (3.02) indicates the value of motor speed that is obtained from the speed estimator.

0.1	11 {	5.01}	Drive	output	freque	ncy	/			
R	RO Bi FI							NC	PT	
OL	Û	±SPE	ED_FR	EQ_M	AX Hz	\Diamond				
RFC	Û		±1250).0 Hz		\Diamond				

Pr 0.11 displays the frequency at the drive output.

0.1	0.12 {4.01} Total motor current											
R	C	Uni	FI					NC	PT			
Û	0 to Drive_current_max A				ax A	\Rightarrow						

Pr **0.12** displays the rms value of the output current of the drive in each of the three phases. The phase currents consist of an active component and a reactive component, which can form a resultant current vector as shown in the following diagram.

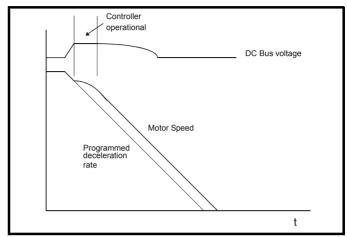
The active current is the torque producing current and the reactive current is the magnetising or flux-producing current.

0.1	13 {	4.20}	Perce	ntage I	oad				
R	C	Uni	FI				NC	PT	
Û	±USER_CURRENT_MAX %								

6.2.6 Ramp mode and Stop mode selectors

0.	14 {	2.04}	Ramp	mode	select					
R۱	W	Txt							US	
OL	⇕		FAS Std Std.h	` '		仓		Std (1)	
RFC	Û		FASt (0) Std (1)							

Pr 0.15 sets the ramp mode of the drive as shown below:


0. Fast ramn

Fast ramp is used where the deceleration follows the programmed deceleration rate subject to current limits. This mode must be used if a braking resistor is connected to the drive.

1: Standard ramp

Standard ramp is used. During deceleration, if the voltage rises to the standard ramp level (Pr **2.08**) it causes a controller to operate, the output of which changes the demanded load current in the motor. As the controller regulates the link voltage, the motor deceleration increases as

the speed approaches zero speed. When the motor deceleration rate reaches the programmed deceleration rate the controller ceases to operate and the drive continues to decelerate at the programmed rate. If the standard ramp voltage (Pr 2.08) is set lower than the nominal DC bus level the drive will not decelerate the motor, but it will coast to rest. The output of the ramp controller (when active) is a current demand that is fed to the frequency changing current controller (Open-loop modes) or the torque producing current controller (RFC mode). The gain of these controllers can be modified with Pr 4.13 and Pr 4.14.

2: Standard ramp with motor voltage boost

This mode is the same as normal standard ramp mode except that the motor voltage is boosted by 20%. This increases the losses in the motor, dissipating some of the mechanical energy as heat giving faster deceleration.

6.2.7 Sleep/wake mode

	0.15 (6.53) Sleep/wake thresh						old				
I	R۱	N	Uni							US	
I	Û	±SPEED_FREQ_MAX Hz/rpm					\Diamond		0.0		

0.	16 {	6.54}	Sleep	/wake o	delay ti	me				
R۱	W Uni								US	
${\bf \hat{v}}$	0.0 to 250.0 s					\Rightarrow		10.0)	

Sleep/wake mode automatically stops the motor if it is running at a low and inefficient speed. It is enabled when Pr **0.15** is set to a non zero value and activated when the absolute value of the frequency/speed reference Pr **1.01** remains below the sleep threshold Pr **0.15** for the time period set in Pr **0.16**.

When sleep/wake mode is activated, the internal drive run command is removed and the motor stops. The motor restarts when Pr 1.01 remains above the sleep threshold Pr 0.15 for the time period set in Pr 0.16.

If the PID functions are being used then sleep mode can be delayed by setting the PID pre-boost level (Pr 14.28) and maximum boost time (Pr 14.29) to non-zero values.

Sleep/wake mode cannot be activated when the keypad reference mode is selected (i.e. Pr 1.49 = 4).

If bipolar mode is disabled (i.e. Pr 1.10 = 0), then negative values of the reference selected (Pr 1.01) are treated as zero when compared to the sleep threshold.

Safety	Product	Mechanical	Electrical	Gettina	Basic	Running		SMARTCARD		Advanced	Technical		UL Listina
Information	Information	Installation	Installation	- · · · ·	parameters		Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

6.2.8 **Current demand filter**

0.	0.17 (4.12) Current demand filter time constant										
R۱	RW Uni									US	
RFC	0.0 to 25.0 ms			\Diamond			0.0				

RFC

A first order filter, with a time constant defined by Pr 0.17, is provided on the current demand to reduce acoustic noise and vibration produced as a result of position feedback quantisation noise. The filter introduces a lag in the speed loop, and so the speed loop gains may need to be reduced to maintain stability as the filter time constant is increased.

6.2.9 Spin start boost

0.1	18 {	5.40}	Spin s	tart bo	ost					
R۱	Ν	Uni							US	
Û	0.0 to 10.0				\Diamond		1.0			

If Pr 0.33 is set to a non zero value, then Pr 0.18 defines a scaling function used by the algorithm that detects the speed of the motor. It is likely that for smaller motors the default value of 1.0 is suitable, but for larger motors this parameter may need to be increased. If the value of Pr 0.18 is too large then the motor may accelerate from standstill when the drive is enabled. If the value of Pr 0.18 is too small then the drive will detect the motor speed as zero even if the motor is spinning.

6.2.10 **Analog input**

0.1	19 {	7.11}	Analo	g inpu	t 2 mo	de						
R۱	Ν	V Txt US										
Û	0 to 6					\Diamond			4-20 (4)		

In modes 2 & 3 a current loop loss trip is generated if the current falls below 3mA

In modes 2 & 4 the analog input level goes to 0.0% if the input current falls below 4mA.

Pr value	Pr string	Mode	Comments
0	0-20	0 - 20mA	
1	20-0	20 - 0mA	
2	4-20.tr	4 - 20mA with trip on loss	Trip if I < 3mA
3	20-4.tr	20 - 4mA with trip on loss	Trip if I < 3mA
4	4-20	4 - 20mA with no trip on loss	0.0% if I ≤ 4mA
5	20-4	20 – 4mA with no trip on loss	100% if I ≤ 4mA
6	VOLt	Voltage mode	

0.2	20 {	7.14}	Analo	g inpu	0.20 (7.14) Analog input 2 destination												
R۱	Ν	Uni		DE					PT	US							
Û	Pr 0.00 to Pr 21.51								Pr 1.3	7							

Pr 0.20 sets the destination of analog input 2.

0.2	21 {	7.15}	Analo	g inpu	t 3 mo	de				
R۱	V Txt							PT	US	
\hat{v}	0 to 9					$\qquad \qquad $		VoLt (6)	

In modes 2 & 3 a current loop loss trip is generated if the current falls below 3mA

In modes 2 & 4 the analog input level goes to 0.0% if the input current falls below 4mA.

Pr value	Pr string	Mode	Comments
0	0-20	0 - 20mA	
1	20-0	20 - 0mA	
2	4-20.tr	4 - 20mA with trip on loss	Trip if I < 3mA
3	20-4.tr	20 - 4mA with trip on loss	Trip if I < 3mA
4	4-20	4 - 20mA with no trip on loss	0.0% if I ≤ 4mA
5	20-4	20 - 4mA with no trip on loss	100% if I ≤ 4mA
6	VOLt	Voltage mode	
7	th.SC	Thermistor mode with short- circuit detection	Th trip if R > 3K3 Th reset if R < 1K8 ThS trip if R < 50R
8	th	Thermistor mode with no short-circuit detection	Th trip if R > 3K3 Th reset if R < 1K8
9	th.diSp	Thermistor mode with display only and no trip	

6.2.11 Real time clock

	0.22 {6.16}			Date							
I	R۷	٧	Uni					NC	PT	US	
ľ	Û	0 to 311299					\Diamond				

0.2	0.23 {6.17} Time												
R۷	N	Uni						NC	PT	US			
$\hat{\mathbb{Q}}$	0.00 to 23.59												

0.24 (6.19) Date / time selector											
R۷	N	Uni								US	
Û	0 to 5					$\qquad \qquad $			3		

0.2	0.25 (6.20) Date format										
R۷	Ν	Txt								US	
Û	S	Std (0),	Std.ds US.ds		6 (2),	\Diamond			UR> St SA> US	` '	

The value of Pr 0.24 determines the data displayed in Pr 0.22 and Pr 0.23 as shown in the table below:

Pr 0.24	Data displayed in Pr 0.22 and Pr 0.23
0	Drive powered-up time: Date and time starts from zero at each power-up
1	Date and time from real time clock in slot 1 Solutions Module. If the module does not support this feature or no module is installed in slot 1, then the date and time will be zero
2	Date and time from real time clock in slot 2 Solutions Module. If the module does not support this feature or no module is installed in slot 2, then the date and time will be zero
3	Date and time from internal real time clock
4	Drive running time: Time that the drive inverter has been active since it was manufactured
5	Set date and time: Date and time can be adjusted and written to all Solutions Modules installed which support real time clock

Pr 0.22 shows the date in the format ddmmyy (Pr 0.25 = 0 or 1) or mmddyy (Pr 0.25 = 2 or 3). Pr 0.23 shows the time in hh.mm format.

If Pr 0.24 is set to 0 or 4 then the date and time start from zero, the days roll over after 30, and the months roll over after 11.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
IIIIOIIIIalioii	IIIIOIIIIalioii	IIIStaliation	IIIStaliation	Starteu	parameters	tile illotoi		operation		parameters	Data		iiiioiiiialioi

The day of the week displayed in Pr 6.18 is zero unless Pr 0.24 is set to

To adjust the date/time, set Pr 0.24 to 5. Enter date/time in Pr 0.22 and Pr 0.23. The date/time will be written to the internal real time clock and any Solutions Module installed that supports real time clock functions.

The drive date and time (Pr 0.22 and Pr 0.23) are used for the date/times associated with the trip log (Pr 10.41 to Pr 10.60) and timer functions (Pr 0.52 to Pr 0.58).

If Pr 0.24 is changed, then a reset must be initiated for the change to take place, otherwise the originally selected clock will be used for the trip log and timer functions.

If Pr 0.24 is changed and a reset is initiated then the trip log times are cleared and the repeat period for the timers (Pr 0.56) set to zero. disabling the timers.

Daylight saving time is enabled if Pr 0.25 is set to 1 (Std) or 3 (US) and has the following effect:

Pr value	Pr string	Date format
0	Std	ddmmyy
1	Std.ds	ddmmyy with an extra hour added for daylight saving
2	US	mmddyy
3	US.ds	mmddyy with an extra hour added for daylight saving

6.2.12 Low load

0.2	0.26 (4.27) Low load detection level											
R۱	N	Uni								US		
\hat{v}	0.0 to 100.0 %					介			0.0			

I	0.2	27 {	4.28}	Low load detection speed / frequency threshold								
I	R۱	٧	Uni								US	
I	Û	0.0 to +SPEED_FREQ_MAX Hz/rpm					\Rightarrow			0.0		

0.2	0.28 (4.29) Trip on abnormal load detection												
R۱	N	Bit US											
Û		OF	= (0) or	On (1))	\Diamond			OFF (0)			

The low load detection function is enabled if Pr 0.26 is set to a non zero value. It is activated when the load (Pr 4.20) falls below the value set in Pr 0.26, if the frequency/speed is above the value set in Pr 0.27 and the motor is not accelerating or decelerating i.e. "At Speed" parameter (Pr 10.06) is set to one. When activated, a 'Load' warning message is displayed if Pr 0.28 is set to zero, otherwise a 'Load' drive trip is initiated. When low load is detected, Pr 10.61 changes to On (1).

6.2.13 **SMARTCARD**

0.2	0.29 {11.36} SMARTCARD parameter data											
R	0	Uni						NC	PT	US		
Û	0 to 999								0			

This parameter shows the number of the data block last transferred from a SMARTCARD to the drive.

	0.3	0 {1	1.42}	Param	eter c	opying					
	R۷	٧	Txt					NC		*	
Į	Ĵ			0 to	4		\Rightarrow		nonE	(0)	

^{*} Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved.

NOTE

If Pr 0.30 is equal to 1 or 2 this value is not transferred to the EEPROM or the drive. If Pr **0.30** is set to a 3 or 4 the value is transferred.

Pr String	Pr value	Comment
nonE	0	Inactive
rEAd	1	Read parameter set from the SMARTCARD
Prog	2	Programming a parameter set to the SMARTCARD
Auto	3	Auto save
boot	4	Boot mode

For further information, please refer to Chapter 9 SMARTCARD operation on page 119.

6.2.14 **Drive parameters**

0.31	{11.33}	Drive	Drive rated voltage								
RO	Txt						NC	PT			
1	200V (0),	, 400V (690V		5V (2),	\Rightarrow						

Pr 0.31 indicates the voltage rating of the drive.

0.3	0.32 {11.32} Drive current scaling												
R	0	Uni						NC	PT				
Û		0.00	to 9,99	99.99 A	١	\Box							

Pr 0.32 indicates the drive current scaling.

0.3	0.33 (6.09) Catch a spinning motor										
R۱	N	Uni								US	
OL	Û		0 to	3		\Diamond			0		
RFC	Û	0 to 3				\Diamond			0		

Open-loop

When the drive is enabled with Pr **0.33** = 0, the output frequency starts at zero and ramps to the required reference. When the drive is enabled when Pr 0.33 has a non-zero value, the drive performs a start-up test to determine the motor speed and then sets the initial output frequency to the synchronous frequency of the motor. Restrictions may be placed on the frequencies detected by the drive as follows:

Pr 0.33	Function
0	Disabled
1	Detect all frequencies
2	Detect positive frequencies only
3	Detect negative frequencies only

RFC

When the drive is enabled with this bit at zero, the post ramp reference (Pr 2.01) starts at zero and ramps to the required reference. When the drive is enabled with this bit at one the post ramp reference is set to the motor speed.

If catch a spinning motor is not required, this parameter should be set to zero as this avoids unwanted movement of the motor shaft when zero speed is required. With larger motors it may be necessary to increase Pr 5.40 Spin Start Boost from its default value of 1.0 for the drive to successfully detect the motor speed.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

6.2.15 **User security**

0.3	4 {1	11.30}	User s	security	y code				
R۱	N	Uni			NC	PT	PS		
Û	0 to 999					\Rightarrow		0	

If any number other than 0 is programmed into this parameter, user security is applied so that no parameters except parameter 0.49 can be adjusted with the keypad. When this parameter is read via a keypad it appears as zero.

For further details refer to section 5.10.3 User Security on page 91.

6.2.16 PC communications

0.3	0.35 {11.24} PC comms mode												
R۱	N	Txt								US			
Û	î AnSI (0), rtu (1), Lcd (2)								rtU (1	1)			

This parameter defines the communications protocol used by the EIA485 comms port on the drive. This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original protocol. The master should wait at least 20ms before send a new message using the new protocol. (Note: ANSI uses 7 data bits, 1 stop bit and even parity; Modbus RTU uses 8 data bits, 2 stops bits and no parity.)

Comms value	String	Communications mode
0	AnSI	ANSI
1	rtU	Modbus RTU protocol
2	Lcd	Modbus RTU protocol, but with an Keypad only

ANSIx3.28 protocol

Full details of the CT ANSI communications protocol are the Advanced User Guide.

Modbus RTU protocol

Full details of the CT implementation of Modbus RTU are given in the Advanced User Guide.

Modbus RTU protocol, but with an Keypad only

This setting is used for disabling communications access when the -Keypad is used as a hardware key.

0.3	6 {1	1.25}	PC co	mms b	aud ra	te				
R۷	٧	Txt							US	
\$			•	4), 960 8400 (7	00 (5), 7),	ightharpoons		19200	(6)	

^{*} only applicable to Modbus RTU mode

This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original baud rate. The master should wait at least 20ms before send a new message using the new baud rate.

0.3	7 {1	11.23}	PC co	mms a	ddress	.				-
R۱	W Uni								US	
Û			0 to 2	47		$\qquad \qquad $		1		

Used to define the unique address for the drive for the serial interface. The drive is always a slave.

Modbus RTU

When the Modbus RTU protocol is used addresses between 0 and 247 are permitted. Address 0 is used to globally address all slaves, and so this address should not be set in this parameter

ANSI

When the ANSI protocol is used the first digit is the group and the second digit is the address within a group. The maximum permitted group number is 9 and the maximum permitted address within a group is 9. Therefore, Pr **0.37** is limited to 99 in this mode. The value 00 is used to globally address all slaves on the system, and x0 is used to address all slaves of group x, therefore these addresses should not be set in this parameter.

6.2.17 Hold zero speed / pre-heat

	0.3	38 {	6.08}	Hold z	ero sp	eed / N	/loto	or p	re-heat	t enable	е	
ı	R۷	٧	Bit								US	
	Û	OFF (0) or On (1)			\Rightarrow			OFF ((0)			

0.3	39 {	6.52}	Motor	pre-he	at curi	ent	ma	gnitud	е		
R۱	N	Uni								US	
$\hat{\mathbb{O}}$	0 to 100 %			\Rightarrow			0				

Pre-heat mode is enabled if Pr 0.38 is set to a one and Pr 0.39 is set to a value greater than zero. When the run command is removed and the motor has reached standstill then the drive applies a percentage (determined by the value in Pr 0.39) of the motor rated current. When pre-heat is active, then the keypad displays the status "Heat".

Hold zero speed is enabled if Pr 0.38 is set to a one and Pr 0.39 is set to zero. When the run command is removed and the motor has reached standstill, the drive continues to apply the magnetising current. The level of magnetising current cannot be modified. When hold zero speed is active, then the keypad displays the status "StoP".

The drive cannot be switched between hold zero speed and pre-heat mode if any one of these modes is active. The drive should be disabled or running to change the mode.

The value in Pr 0.39 should not be set too high because it could damage the motor or cause the motor thermal protection to operate and trip the drive.

6.2.18 **Autotune**

0.4	40 {	5.12}	Autot	une				
R۱	N	Uni						
OL	Û		0 to	2	\Diamond		0	
RFC	Û	0 to 4		仓		0		

Open-Loop

There are two autotune tests available in open loop mode, a stationary and a rotating test. A rotating autotune should be used whenever possible, so the measured value of power factor of the motor is used by the drive.

- The stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft.
- A rotating autotune first performs a stationary autotune, before rotating the motor at ²/₃ base speed in the forward direction for several seconds. The motor must be free from load for the rotating autotune.

To perform an autotune, set Pr 0.40 to 1 for a stationary test or 2 for a rotating test, and provide the drive with an enable signal (on terminal 31) and press the green (hand) button.

Safety Product Mechanical Electrical Information Installation Installa

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the Enable signal from terminal 31, setting the drive enable parameter Pr 6.15 to OFF (0) or disabling the drive via the control word (Pr 6.42 & Pr 6.43).

For further information refer to section *Pr 0.40 {5.12} Autotune* on page 112.

RFC

There are three autotune tests available in RFC mode, a stationary test, a rotating test and an inertia measurement test. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. An inertia measurement test should be performed separately to a stationary or rotating autotune.

- The stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft.
- A rotating autotune first performs a stationary autotune, before
 rotating the motor at ²/₃ base speed in the forward direction for
 approximately 30 seconds. The motor must be free from load for the
 rotating autotune.
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see Speed loop gains, below) and to provide torque feed forwards when required during acceleration. During the inertia measurement test the motor speed changes from ¹/₃ to ²/₃ rated speed in the forward direction several times. The motor can be loaded with a constant torque load and still give an accurate result, however, non-linear loads and loads that change with speed will cause measurement errors.

To perform an autotune, set Pr **0.40** to 1 for a stationary test, 2 for a rotating test, or 3 for an inertia measurement test and provide the drive with both an enable signal (on terminal 31) and a run signal.

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the Enable signal from terminal 31, setting the drive enable parameter Pr 6.15 to OFF (0) or disabling the drive via the control word (Pr 6.42 & Pr 6.43).

Setting Pr **0.40** to 4 will cause the drive to calculate the current loop gains based on the previously measured values of motor resistance and inductance. The drive does apply any voltage to the motor during this test. The drive will change Pr **0.40** back to 0 as soon as the calculations are complete (approximately 500ms).

For further information refer to section *Pr 0.40 {5.12} Autotune* on page 115.

0.4	41 {	5.18}	Maxin	num sv	vitchin	g frequ	ency			
R۱	Ν	Txt				RA			US	
Û	3 (0	0), 4 (1)), 6 (2), 16 (5) l		12 (4),	\Rightarrow		3 (0)		

This parameter defines the required switching frequency. The drive may automatically reduce the actual switching frequency (without changing this parameter) if the power stage becomes too hot. A thermal model of the IGBT junction temperature is used based on the heatsink temperature and an instantaneous temperature drop using the drive output current and switching frequency. The estimated IGBT junction temperature is displayed in Pr 7.34. If the temperature exceeds 145°C the switching frequency is reduced if this is possible (i.e >3kHz). Reducing the switching frequency reduces the drive losses and the junction temperature displayed in Pr 7.34 also reduces. If the load condition persists the junction temperature may continue to rise again above 145°C and the drive cannot reduce the switching frequency further the drive will initiate an 'O.ht1' trip. Every second the drive will attempt to restore the switching frequency to the level set in Pr 0.41.

The full range of switching frequencies is not available on all ratings of Affinity. See section 8.4 *Switching frequency* on page 118, for the maximum available switching frequency for each drive rating.

6.2.19 Motor parameters

0.4	0.42 (5.11) No. of motor poles										
R۷	٧	Txt								US	
Û	0 to 60 (Auto to 120 Pole)				\Diamond			Auto (0)		

Open-loop

This parameter is used in the calculation of motor speed, and in applying the correct slip compensation. When auto is selected, the number of motor poles is automatically calculated from the rated frequency (Pr **0.47**) and the rated full load rpm (Pr **0.45**). The number of poles = 120 * rated frequency / rpm rounded to the nearest even number.

RFC

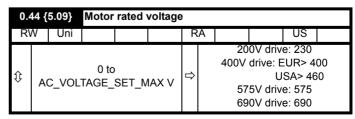
This parameter must be set correctly for the vector control algorithms to operate correctly. When auto is selected, the number of motor poles is automatically calculated from the rated frequency (Pr **0.47**) and the rated full load rpm (Pr **0.45**). The number of poles = 120 * rated frequency / rpm rounded to the nearest even number.

	0.4	13 {	5.10}	Motor	rated	power	fact	or			
ı	R۱	V	Uni							US	
ı	OL	${\bf \hat{y}}$		0.000 to 1.000			\Diamond		0.85	0	

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current.

Open-loop

The power factor is used in conjunction with the motor rated current (Pr **0.46**) to calculate the rated active current and magnetising current of the motor. The rated active current is used extensively to control the drive, and the magnetising current is used in vector mode Rs compensation. It is important that this parameter is set up correctly.


This parameter is obtained by the drive during a rotational autotune. If a stationary autotune is carried out, then the nameplate value should be entered in Pr **0.43**.

RFC

If the stator inductance (Pr **5.25**) contains a non-zero value, the power factor used by the drive is continuously calculated and used in the vector control algorithms (this will not update Pr **0.43**).

If the stator inductance is set to zero (Pr **5.25**) then the power factor written in Pr **0.43** is used in conjunction with the motor rated current and other motor parameters to calculate the rated active and magnetising currents which are used in the vector control algorithm.

This parameter is obtained by the drive during a rotational autotune. If a stationary autotune is carried out, then the nameplate value should be entered in Pr **0.43**.

Enter the value from the rating plate of the motor.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

0.4	45 {	5.08}	Motor	rated	full loa	ad s	pee	d (rpm)			
R۱	N	Uni								US	
OL	Û	0	to 180,000 rpm			\Diamond			UR> 1, JSA> 1,		
RFC	Û	0.00	0 to 40,000.00 rpm			\Diamond			JR> 1,4 SA> 1,7		

Open-loop

This is the speed at which the motor would rotate when supplied with its base frequency at rated voltage, under rated load conditions (= synchronous speed - slip speed). Entering the correct value into this parameter allows the drive to increase the output frequency as a function of load in order to compensate for this speed drop.

Slip compensation is disabled if Pr 0.45 is set to 0 or to synchronous speed, or if Pr 5.27 is set to 0.

If slip compensation is required this parameter should be set to the value from the rating plate of the motor, which should give the correct rpm for a hot machine. Sometimes it will be necessary to adjust this when the drive is commissioned because the nameplate value may be inaccurate. Slip compensation will operate correctly both below base speed and within the field weakening region. Slip compensation is normally used to correct for the motor speed to prevent speed variation with load. The rated load rpm can be set higher than synchronous speed to deliberately introduce speed droop. This can be useful to aid load sharing with mechanically coupled motors.

RFC

Rated load rpm is used with motor rated frequency to determine the full load slip of the motor which is used by the vector control algorithm. Incorrect setting of this parameter can result in the following:

- Reduced efficiency of motor operation
- Reduction of maximum torque available from the motor
- Failure to reach maximum speed
- Over-current trips
- Reduced transient performance
- Inaccurate control of absolute torque in torque control modes

The nameplate value is normally the value for a hot machine, however, some adjustment may be required when the drive is commissioned if the nameplate value is inaccurate.

0.4	0.46 (5.07) Motor rated curre										
R۱	N	Uni				R	A			US	
\hat{v}	C	to Rat	ed_cur	rent_m	ax A	\Rightarrow		Drive ra	ted cur	rent [11	.32]

Enter the name-plate value for the motor rated current.

0.4	47 {	5.06}	Rated	freque	ency						
R۱	N	Uni							US		
OL	Û		0 to 3,0	to 3,000.0Hz			EUR> 50.0, USA> 60.0				
RFC	Û		0 to 1,250.0Hz			\Diamond	EUR>	50.0, L	JSA> 60	0.0	

Open-loop & RFC

Enter the value from the rating plate of the motor.

6.2.20 Operating-mode selection

0.4	8 {1	1.31}	Opera	ting m	ode se	lec	tor			
R۷	٧	Txt	NC					PT		
î			1 to	2		⇧	OL	•	1	
♦			1102			·	RFC	2	2	

The settings for Pr 0.48 are as follows:

Setting		Operating mode
OPEn LP	1	Open-loop
rfc	2	RFC

This parameter defines the drive operating mode. Pr xx.00 must be set to 1253 (European defaults) or 1254 (USA defaults) before this parameter can be changed. When the drive is reset to implement any change in this parameter, the default settings of all parameters will be set according to the drive operating mode selected and saved in memory.

6.2.21 Status information

	0.4	0.49 {11.44} Security status										
	R۷	٧	Txt							PT	US	
4	Û			0 to	2		\Diamond			0		

This parameter controls access via the drive keypad as follows:

Value	String	Action
0	L1	Only menu 0 can be accessed
1	L2	All menus can be accessed
2	Loc	Lock user security when drive is reset.
_		(This parameter is set to L1 after reset.)

The keypad can adjust this parameter even when user security is set.

0.5	0.50 {11.29} Software version number												
R	0	Uni						NC	PT				
Û	1.00 to 99.99					\Rightarrow							

The parameter displays the software version of the drive.

0.5	51 {	8.29}	Positive logic select									
R۷	٧	Bit							PT	US		
☼ OF			F (0) or	On (1)		\Rightarrow			On (1)		

Pr 0.51 changes the logic polarity for digital inputs and digital outputs, but not the enable input, the relay output or the 24V output.

	Pr 0.51 = 0 (negative logic)	Pr 0.51 = 1 (positive logic)
Inputs	<5V = 1 >15V = 0	<5V = 0 >15V = 1
Non-relay outputs	On (1) = <5V OFF (0) = >15V	OFF (0) = <5V On (1) = >15V
Relay outputs	OFF (0) = open On (1) = closed	OFF (0) = open On (1) = closed
24V output (T22)	OFF (0) = 0V On (1) = 24V	OFF (0) = 0V On (1) = 24V

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10010	parameters	Data	Diagnostico	Information

6.2.22 **Timer functions**

The timer function allows a digital output to be set/reset periodically. This can be a one-off event or a repeated on an hourly, daily, weekly, monthly

	0.52 {9.35} Timer 1 start date											
	R۷	V	Uni							PT	US	
Į	Ĵ		(0 to 311	299		$\qquad \qquad $			0		

0.	53 {	9.36}	Timer	1 start	time					
R۱	N	Uni						PT	US	
$\hat{\mathbb{Q}}$	(.00 to 2	23.59		\Diamond		0.00)	

0.	54 {	9.37}	Timer	1 stop	date					
R۱	N	Uni						PT	US	
Û) 0) to 311	299		\uparrow		0		

0.5	0.55 {9.38} Timer 1 stop time												
R۱	N	Uni							PT	US			
Û		0	.00 to 2	23.59		\Diamond			0.00)			

The values in Pr 0.52 to Pr 0.55 determine when the timer output is energised and de-energised. The data format for Pr 0.52 to Pr 0.55 depends upon the selected repeat period (Pr 0.56), see below.

0.8	0.56 (9.39) Timer 1 repeat function												
R۱	Ν	Uni							PT	US			
\hat{v}			0 to	6		\Rightarrow			0				

	D	Sta	art	St	ор
Pr 0.56	Repeat period	Date	Time	Date	Time
	F	Pr 0.52	Pr 0.53	Pr 0.54	Pr 0.55
0	None				
1	Every hour		Minutes past each hour (0 to 59)		Minutes past each hour (0 to 59)
2	Every day		Time (hh.mm)		Time (hh.mm)
3	Every week	Day of week*	Time (hh.mm)	Day of week*	Time (hh.mm)
4	Every month	Day of month (0 to 31)	Time (hh.mm)	Day of month (0 to 31)	Time (hh.mm)
5	Every year	Date**	Time (hh.mm)	Date**	Time (hh.mm)
6	One off event	Date**	Time (hh.mm)	Date**	Time (hh.mm)

^{*} Day of week = 0 to 6, where 0 = Sunday, 1 = Monday etc.

If the date format is changed then Pr 0.52 to Pr 0.55 will be reset.

0.57 {9.40} Timer 1 enable											
R۱	N	Bit							PT	US	
Û	OFF (0) or On (1)				\Rightarrow		OFF (0)				

The timer function is enabled if Pr 0.57 is set to On (1).

0.8	58 {	9.43}	Timer 1 destination								
R۱	N	Uni							PT	US	
\hat{v}	0.00 to 50.99			\Diamond			0.00)			

The timer destination is determined by the value in Pr 0.58. If Pr 0.58 is not set to a valid destination then the timer will be disabled.

^{**}The format for Pr 0.54 and Pr 0.56 will depend upon the date format (Pr 0.25), mddyyyy (US) or ddmmyyyy (Std).

Safety Running **UL** Listing PC tools Optimization Diagnostics Information operation Information Installation Installation Started parameter the motor parameters Data Information

Running the motor

This chapter takes the new user through all the essential steps to running a motor for the first time, in each of the possible operating modes

For information on tuning the drive for the best performance, see Chapter 8 Optimization .

Ensure that no damage or safety hazard could arise from the motor starting unexpectedly.

The values of the motor parameters affect the protection of the motor

The default values in the drive should not be relied upon. It is essential that the correct value is entered in Pr 0.46 Motor rated current. This affects the thermal protection of the motor.

If the keypad mode has been used previously, ensure that

the keypad reference has been set to 0 using the buttons as if the drive is started using the keypad it will run to CAUTION the speed defined by the keypad reference (Pr 0.35).

If the intended maximum speed affects the safety of the machinery, additional independent over-speed protection must be used.

7.1 **Quick start Connections**

Fire Mode - important warning.

When Fire Mode is active the motor overload and thermal protection are disabled, as well as a number of drive protection functions. Fire Mode is provided for use only in emergency situations where the safety risk from disabling protection is less than the risk from the drive tripping typically in smoke extraction operation to permit evacuation of a building. The use of Fire Mode itself causes a risk of fire from overloading of the motor or drive, so it must only be used after careful consideration of the balance of risks.

Care must be taken to prevent inadvertent activation or deactivation of Fire Mode. Fire Mode is indicated by a flashing display text warning "Fire mode active".

Care must be taken to ensure that parameters Pr 1.53 or Pr 1.54 are not inadvertently re-allocated to different inputs or variables. It should be noted that, by default, Pr 1.54 is controlled from digital input 4 and changing Pr 6.04 or Pr 8.24 can re-allocate this digital input to another parameter. These parameters are at access level 2 in order to minimise the risk of inadvertent or unauthorized changes. It is recommended that User Security be applied to further reduce the risk (see section 5.10 Parameter access level and security on page 90). These parameters may also be changed via serial communications so adequate precautions should be taken if this functionality is utilised.

7.1.1 **Basic requirements**

This section shows the basic connections which must be made for the drive to run in the required mode. For minimal parameter settings to run in each mode please see the relevant part of section 7.4 Quick Start commissioning/start-up on page 110.

Table 7-1 Minimum control connection requirements for each control mode

Drive control method	Requirements					
Terminal mode	Drive Enable Speed reference Run forward or run reverse command					
Keypad mode	Drive Enable					
Serial communications	Drive Enable Serial communications link					

For Solutions Module terminal information see section 11.14 Menus 15 and 16: Solutions Module set-up on page 179 or the appropriate Solutions Module option user guide.

7.2 Changing the operating mode

Changing the operating mode returns all parameters to their default value, including the motor parameters. (Pr 0.49 and Pr 0.34 are not affected by this procedure.)

Procedure

Use the following procedure only if a different operating mode is required:

- 1. Enter either of the following values in Pr xx.00, as appropriate: 1253 (EUR, 50Hz AC supply frequency) 1254 (USA, 60Hz AC supply frequency)
- 2. Change the setting of Pr 0.48 as follows:

Pr 0.48 setting	Operating mode		
0.48 OPEn LP	1	Open-loop	
0.48 rfc	2	RFC mode	

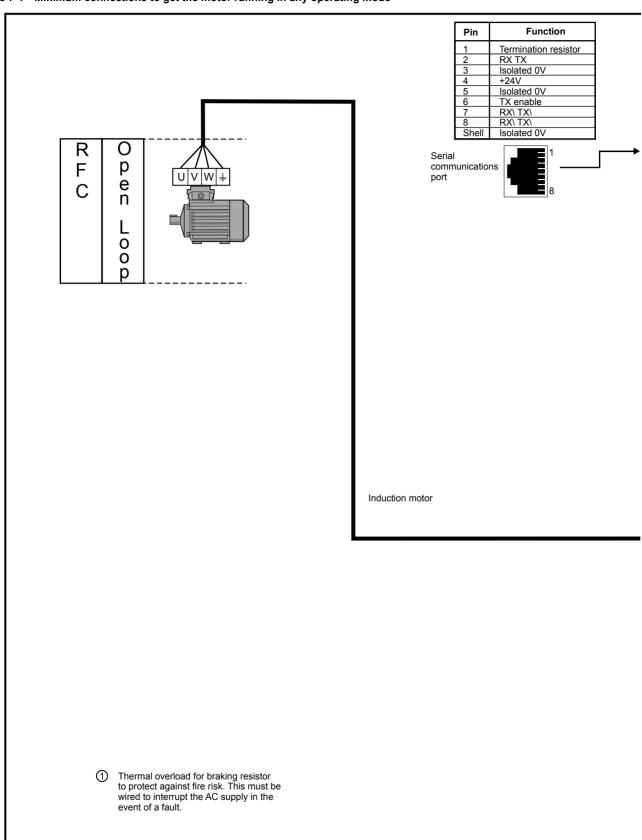
The figures in the second column apply when serial communications are used.

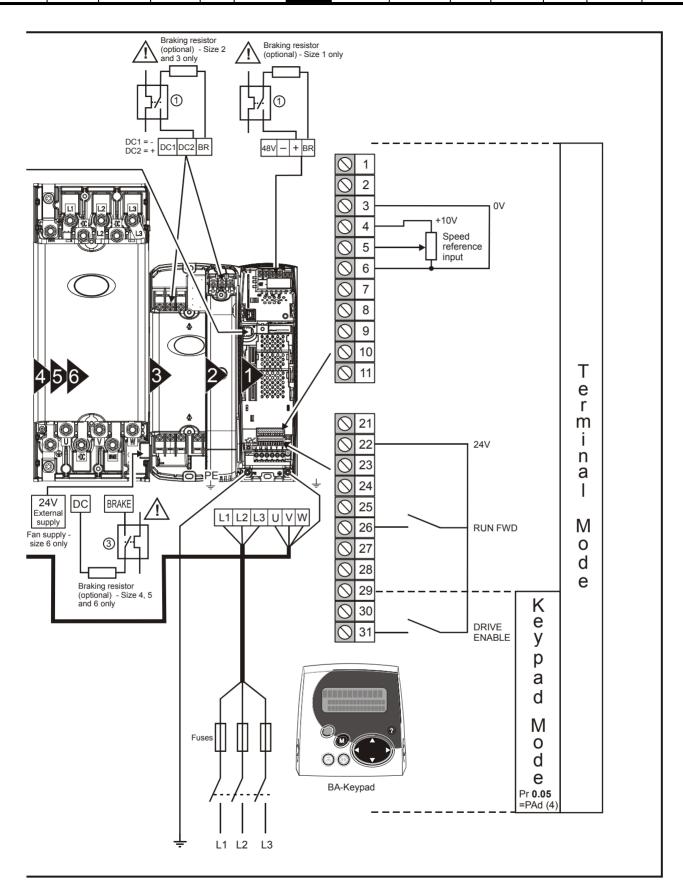
- 3. Either:
- Press the red reset button
- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.38 to 100 (ensure that Pr. xx.00 returns to 0).

7.3 Changing keypad mode

Pressing the following keypad buttons selects the keypad mode

- Blue Auto
- Red 🕝 Off
- Green (1) Hand


In Hand mode, the motor speed is adjusted by pressing the keypad up/ down arrow buttons.


In Auto mode, the motor speed control reference is determined by the value set in the speed/frequency reference selector Pr 0.05. If hand mode is selected then the motor speed will not change during the

In Off mode, the motor will be stopped but pressing the keypad up/down arrow buttons will allow the keypad control reference Pr 1.17 to be adjusted. Selecting Hand mode will then ramp the motor up to the selected speed.

Product Information Getting Started Running the motor Technical Data UL Listing Information Safety Electrical SMARTCARD Advanced Optimization PC tools Diagnostics operation Information Installation Installation parameters parameters

Figure 7-1 Minimum connections to get the motor running in any operating mode

Safety Product Information Installation Inst

7.4 Quick Start commissioning/start-up

7.4.1 Open loop

Action	Detail	
Before power-up	 Ensure: The drive enable signal is not given (terminal 31) Run signal is not given Motor is connected 	X
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 235.	7
Enter motor nameplate details	Enter: • Motor rated frequency in Pr 0.47 (Hz) • Motor rated current in Pr 0.46 (A) • Motor rated speed in Pr 0.45 (rpm) • Motor rated voltage in Pr 0.44 (V) - check if 人 or △ connection	Mot X XXXXXXXX No XXXXXXXXX No XXXXXXXXXX
Set maximum frequency	Enter: • Maximum frequency in Pr 0.02 (Hz)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/100Hz) Deceleration rate in Pr 0.04 (s/100Hz) (If braking resistor installed, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	100Hz
Autotune	The drive is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A rotating autotune should be used whenever possible so the measured value of power factor of the motor is used by the drive. A rotating autotune will cause the motor to accelerate up to ² / ₃ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The enable signal must be removed before the drive can be made to run at the required reference. The drive can be stopped at any time by removing the run signal or removing the drive enable. • A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load from the motor shaft. A stationary autotune measures the stator resistance of the motor and the voltage offset in the drive. These are required for good performance in vector control modes. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. • A rotating autotune should only be used if the motor is uncoupled. A rotating autotune first performs a stationary autotune before rotating the motor at ² / ₃ base speed in the direction selected. The rotating autotune measures the power factor of the motor. To perform an autotune: • Set Pr 0.40 = 1 for a stationary autotune or set Pr 0.40 = 2 for a rotating autotune • Close the Drive Enable signal (terminal 31). The drive will display 'rdy' or 'Off'. • Press the blue auto or green hand button. The display will flash 'Autotune in progress', while the drive is performing the autotune. • Wait for the drive to display 'rdy' or 'inh' and for the motor to come to a standstill. If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 235. Remove the drive enable and run signal from the drive.	Cos Ø R _s σL _s
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

7.4.2 RFC mode

Induction motor

Action	Detail	
Before power-up	Ensure: Drive Enable signal is not given (terminal 31) Run signal is not given Motor and feedback device are connected	X
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 235.	7
Enter motor nameplate details	 Enter: Motor rated frequency in Pr 0.47 (Hz) Motor rated current in Pr 0.46 (A) Motor rated speed (base speed - slip speed) in Pr 0.45 (rpm) Motor rated voltage in Pr 0.44 (V) - check if	Mar 1/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3
Set maximum speed	Enter: • Maximum speed in Pr 0.02 (rpm)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/1000rpm) Deceleration rate in Pr 0.04 (s/1000rpm) (If braking resistor installed, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'lt.br' trips may be seen.) 	1000pm
Select or deselect catch a spinning motor mode	If catch a spinning motor mode is not required then set Pr 6.09 to 0. If catch a spinning motor mode is required then leave Pr 6.09 at the default of 1, but depending on the size of the motor the value in Pr 5.40 may need to be adjusted. Pr 5.40 defines a scaling function used by the algorithm that detects the speed of the motor. The default value of Pr 5.40 is 1 which is suitable for small motors (<4kW). For larger motors the value in Pr 5.40 will need to be increased. Approximate values of Pr 5.40 for different motor sizes are as follows, 2 for 11kW, 3 for 55kW and 5 for 150kW. If the value of Pr 5.40 is too large the motor may accelerate from standstill when the drive is enabled. If the value of this parameter is too small the drive will detect the motor speed as zero even if the motor is spinning.	
Autotune	The drive is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. NOTE It is highly recommended that a rotating autotune is performed (Pr 0.40 set to 2). A rotating autotune will cause the motor to accelerate up to ² / ₃ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The enable signal must be removed before the drive can be made to run at the required reference. WARNING The drive can be stopped at any time by removing the run signal or removing the drive enable. A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load from the motor shaft. The stationary autotune measures the stator resistance and transient inductance of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 0.38 and Pr 0.39 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. A rotating autotune should only be used if the motor is uncoupled. A rotating autotune first performs a stationary autotune before rotating the motor at ² / ₃ base speed in the direction selected. The rotating autotune measures the stator inductance of the motor and calculates the power factor. To perform an autotune: Set Pr 0.40 = 1 for a stationary autotune or set Pr 0.40 = 2 for a rotating autotune Close the Drive Enable signal (terminal 31). The drive will display 'rdy' or 'Off'. Press the blue auto or green hand button. The display will flash 'Autotune in progress', while the drive is performing the autotune. Wait for the drive to display 'rdy' or 'inh' and for the motor to come to a standstill lift the drive trips, see Chapter 13	R _s dL _s T saturation break-points N rpm
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	•

Safety Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the moto operation narameters Data Information

8 Optimization

This chapter takes the user through methods of optimizing the product set-up, maximizing performance. The auto-tuning features of the drive simplify this task.

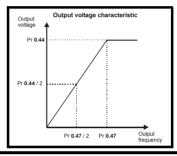
8.1 Motor map parameters

8.1.1 Open loop motor control

Pr 0.46 {5.07} Motor rated current

Defines the maximum continuous motor current

The motor rated current parameter must be set to the maximum continuous current of the motor. The motor rated current is used in the following:


- Current limits (see section 8.2 Current limits on page 117, for more information)
- Motor thermal overload protection (see section 8.3 Motor thermal protection on page 117, for more information)
- Vector mode voltage control (see Voltage mode Pr 0.07, later in this table)
- Slip compensation (see Slip compensation Pr 5.27, later in this table)
- Dynamic V/F control

Pr 0.44 {5.09} Motor rated voltage

Pr 0.47 {5.06} Motor rated frequency

Defines the voltage applied to the motor at rated frequency Defines the frequency at which rated voltage is applied

The motor rated voltage Pr 0.44 and the motor rated frequency Pr 0.47 are used to define the voltage to frequency characteristic applied to the motor (see voltage mode Pr 0.07, later in this table). The motor rated frequency is also used in conjunction with the motor rated speed to calculate the rated slip for slip compensation (see motor rated speed Pr 0.45, later in this table).

Pr 0.45 {5.08} Motor rated speed

Pr 0.42 {5.11} Motor number of poles

Defines the full load rated speed of the motor

Defines the number of motor poles

The motor rated speed and the number of poles are used with the motor rated frequency to calculate the rated slip of induction machines in Hz.

Rated slip (Hz) = Motor rated frequency - (Number of pole pairs x [Motor rated speed / 60]) = $0.47 - \left(\frac{0.42}{2} \times \frac{0.45}{60}\right)$

If Pr 0.45 is set to 0 or to synchronous speed, slip compensation is disabled. If slip compensation is required this parameter should be set to the nameplate value, which should give the correct rpm for a hot machine. Sometimes it will be necessary to adjust this when the drive is commissioned because the nameplate value may be inaccurate. Slip compensation will operate correctly both below base speed and within the field-weakening region. Slip compensation is normally used to correct for the motor speed to prevent speed variation with load. The rated load rpm can be set higher than synchronous speed to deliberately introduce speed droop. This can be useful to aid load sharing with mechanically coupled motors.

Pr 0.42 is also used in the calculation of the motor speed display by the drive for a given output frequency. When Pr 0.42 is set to 'Auto', the number of motor poles is automatically calculated from the rated frequency Pr 0.47, and the motor rated speed Pr 0.45.

Number of poles = 120 x (Motor rated frequency Pr 0.47 / Motor rated speed Pr 0.45) rounded to the nearest even number

Pr 0.43 {5.10} Motor rated power factor

Defines the angle between the motor voltage and current

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current. The power factor is used in conjunction with the motor rated current Pr 0.46, to calculate the rated active current and magnetising current of the motor. The rated active current is used extensively to control the drive, and the magnetising current is used in vector mode stator resistance compensation. It is important that this parameter is set up correctly. The drive can measure the motor rated power factor by performing a rotating autotune (see Autotune Pr 0.40, below).

Pr 0.40 {5.12} Autotune

There are two autotune tests available in open loop mode, a stationary and a rotating test. A rotating autotune should be used whenever possible so the measured value of power factor of the motor is used by the drive.

- A stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft. The stationary test measures the stator resistance (Pr 5.17) and voltage offset (Pr 5.23), which are required for good performance in vector control modes (see Voltage mode Pr 0.07, later in this table). The stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. To perform a Stationary autotune, set Pr 0.40 to 1, and provide the drive with both an enable signal (on terminal 31) and press the green (Hand) button.
- A rotating autotune should only be used if the motor is unloaded. A rotating autotune first performs a stationary autotune, as above, before rotating the motor at ²/₃ base speed in the direction selected for several seconds (regardless of the speed reference). In addition to the stator resistance (Pr 5.17) and voltage offset (Pr 5.23), the rotating autotune measures the power factor of the motor and updates Pr 0.43 with the correct value. To perform a Rotating autotune, set Pr 0.40 to 2, and provide the drive with both an enable signal (on terminal 31) and press the green (Hand) button.

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the Drive enable signal from terminal 31, setting the drive enable parameter Pr 6.15 to OFF (0) or disabling the drive via the control word (Pr 6.42 & Pr 6.43).

112 Affinity User Guide Issue Number: 3

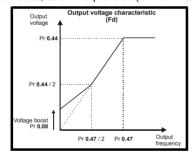
PC tools Optimization Diagnostics parameters operation Information Information Installation Installation parameters Information

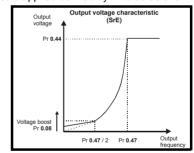
Pr 0.07 {5.14} Voltage mode

There are six voltage modes available which fall into two categories, vector control and fixed boost.

Vector control

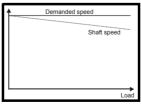
Vector control mode provides the motor with a linear voltage characteristic from 0Hz to motor rated frequency (Pr 0.47), and then a constant voltage above motor rated frequency. When the drive operates between motor rated frequency/50 and motor rated frequency/4, full vector based stator resistance compensation is applied. When the drive operates between motor rated frequency/4 and motor rated frequency/2 the stator resistance compensation is gradually reduced to zero as the frequency increases. For the vector modes to operate correctly the motor rated power factor (Pr 0.43), stator resistance (Pr 5.17) and voltage offset (Pr 5.23) are all required to be set up accurately. The drive can be made to measure these by performing an autotune (see Pr 0.40 Autotune). The drive can also be made to measure the stator resistance and voltage offset automatically every time the drive is enabled or the first time the drive is enabled after it is powered up, by selecting one of the vector control voltage modes.


- (0) Ur S = The stator resistance and the voltage offset are measured and the parameters for the selected motor map are over-written each time the drive is made to run. This test can only be done with a stationary motor where the flux has decayed to zero. Therefore this mode should only be used if the motor is guaranteed to be stationary each time the drive is made to run. To prevent the test from being done before the flux has decayed there is a period of 1 second after the drive has been in the ready state during which the test is not done if the drive is made to run again. In this case, previously measured values are used. Ur s mode ensures that the drive compensates for any change in motor parameters due to changes in temperature. The new values of stator resistance and voltage offset are not automatically saved to the drive's EEPROM.
- (4) Ur_I = The stator resistance and voltage offset are measured when the drive is first made to run after each power-up. This test can only be done with a stationary motor. Therefore this mode should only be used if the motor is guaranteed to be stationary the first time the drive is made to run after each power-up. The new values of stator resistance and voltage offset are not automatically saved to the drive's EEPROM.
- (1) Ur = The stator resistance and voltage offset are not measured. The user can enter the motor and cabling resistance into the stator resistance parameter (Pr 5.17). However this will not include resistance effects within the drive inverter. Therefore if this mode is to be used, it is best to use an autotune test initially to measure the stator resistance and voltage offset.
- (3) Ur_Auto= The stator resistance and voltage offset are measured once, the first time the drive is made to run. After the test has been completed successfully the voltage mode (Pr 0.07) is changed to Ur mode. The stator resistance (Pr 5.17) and voltage offset (Pr 5.23) parameters are written to, and along with the voltage mode (Pr 0.07), are saved in the drive's EEPROM. If the test fails, the voltage mode will stay set to Ur Auto and the test will be repeated next time the drive is made to run.


Fixed boost

Neither the stator resistance nor the voltage offset are used in the control of the motor, instead a fixed characteristic with low frequency voltage boost as defined by parameter Pr 0.08, is used. Fixed boost mode should be used when the drive is controlling multiple motors. There are two settings of fixed boost available:

- (2) **Fd** = This mode provides the motor with a linear voltage characteristic from 0Hz to rated frequency (Pr **0.47**), and then a constant voltage above rated frequency.
- (5) SrE = This mode provides the motor with a square law voltage characteristic from 0Hz to rated frequency (Pr 0.47), and then a constant voltage above rated frequency. This mode is suitable for variable torque applications like fans and pumps where the load is proportional to the square of the speed of the motor shaft. This mode should not be used if a high starting torque is required.


For both these modes, at low frequencies (from 0Hz to ½ x Pr 0.47) a voltage boost is applied defined by Pr 0.08 as shown below:

Pr 5.27 Slip compensation

When a motor, being controlled in open loop mode, has load applied a characteristic of the motor is that the output speed droops in proportion to the load applied as shown:

In order to prevent the speed droop shown above slip compensation should be enabled.

To enable slip compensation Pr 5.27 must be set to a 1 (this is the default setting), and the motor rated speed must be entered in Pr 0.45 (Pr 5.08). The motor rated speed parameter should be set to the synchronous speed of the motor minus the slip speed. This is normally displayed on the motor nameplate, i.e. for a typical 18.5kW, 50Hz, 4 pole motor, the motor rated speed would be approximately 1465rpm. The synchronous speed for a 50Hz, 4 pole motor is 1500rpm, so therefore the slip speed would be 35rpm.

If the synchronous speed is entered in Pr 0.45, slip compensation will be disabled. If too small a value is entered in Pr 0.45, the motor will run faster than the demanded frequency.

The synchronous speeds for 50Hz motors with different numbers of poles are as follows:

2 pole = 3000rpm, 4 pole = 1500rpm, 6pole =1000rpm, 8 pole = 750rpm

Safety Optimization PC tools Diagnostics Information operation Information Installation Installation Started parameters the moto parameters Data Information

8.1.2 RFC mode

Pr 0.46 {5.07} Motor rated current

Defines the maximum motor continuous current

The motor rated current parameter must be set to the maximum continuous current of the motor. The motor rated current is used in the following:

- Current limits (see section 8.2 Current limits on page 117, for more information)
- Motor thermal overload protection (see section 8.3 Motor thermal protection on page 117, for more information)
- Vector control algorithm

Pr 0.44 {5.09} Motor rated voltage

Pr 0.47 {5.06} Motor rated frequency

The motor rated voltage Pr 0.44 and the motor rated frequency Pr 0.47 are used to define the relationship between the voltage and frequency applied to the motor, as shown.

The motor rated voltage is used by the field controller to limit the voltage applied to the motor. Normally this is set to the nameplate value. To allow current control to be maintained, it is necessary for the drive to leave some 'headroom' between the motor terminal voltage and the maximum available drive output voltage. For good transient performance at high speed, the motor rated voltage should be set below 95% of the minimum supply voltage to the drive.

The motor rated voltage and motor rated frequency are also used during the rotating autotune test (see Autotune Pr 0.40 later in this table) and in the calculations required for automatic optimization of the motor rated speed (see Motor rated speed optimization Pr 5.16, later in this table). Therefore, it is important that the correct value for motor rated voltage is

Defines the voltage applied to the motor at rated frequency Defines the frequency at which rated voltage is applied

Pr 0.45 (5.08) Motor rated speed

Pr 0.42 {5.11} Motor number of poles

Defines the full load rated speed of the motor

Defines the number of motor poles

The motor rated speed and motor rated frequency are used to determine the full load slip of the motor which is used by the vector control algorithm. Incorrect setting of this parameter has the following effects:

- Reduced efficiency of motor operation
- Reduction of maximum torque available from the motor
- Reduced transient performance
- Inaccurate control of absolute torque in torque control modes

The nameplate value is normally the value for a hot motor; however, some adjustment may be required when the drive is commissioned if the nameplate value is inaccurate. Either a fixed value can be entered in this parameter or an optimization system may be used to automatically adjust this parameter (see Motor rated speed autotune Pr 5.16, later in this table).

When Pr 0.42 is set to 'Auto', the number of motor poles is automatically calculated from the motor rated frequency Pr 0.47, and the motor rated speed Pr 0.45

Number of poles = 120 x (Motor rated frequency Pr 0.47 / Motor rated speed Pr 0.45) rounded to the nearest even number

Pr 0.43 {5.10} Motor rated power factor

Defines the angle between the motor voltage and current

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current. If the stator inductance is set to zero (Pr 5.25) then the power factor is used in conjunction with the motor rated current Pr 0.46 and other motor parameters to calculate the rated active and magnetising currents of the motor, which are used in the vector control algorithm. If the stator inductance has a non-zero value this parameter is not used by the drive, but is continuously written with a calculated value of power factor. The stator inductance can be measured by the drive by performing a rotating autotune (see Autotune Pr 0.40, later in this table).

114 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

Pr 0.40 {5.12} Autotune

There are three autotune tests available in RFC mode, a stationary test, a rotating test and an inertia measurement test. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. An inertia measurement test should be performed separately to a stationary or rotating autotune.

It is highly recommended that a rotating autotune is performed (Pr 0.40 set to 2).

- A stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft. The stationary autotune measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 4.13 and Pr 4.14 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. To perform a Stationary autotune, set Pr 0.40 to 1, and provide the drive with both an enable signal (on terminal 31) and press the green (Hand) button.
- A rotating autotune should only be used if the motor is unloaded. A rotating autotune first performs a stationary autotune before rotating the motor at $^{2}/_{3}$ of motor rated frequency in the direction selected for approximately 30s. During the rotating autotune the stator inductance (Pr 5.25), and the motor saturation breakpoints (Pr 5.29 and Pr 5.30) are modified by the drive. The power factor is also modified for user information only. but is not used after this point as the stator inductance is used in the vector control algorithm instead. To perform a Rotating autotune, set Pr 0.40 to 2, and provide the drive with both an enable signal (on terminal 31) and press the green (Hand) button.
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see Speed loop gains) and to provide torque feed-forwards when required during acceleration. During the inertia measurement test the drive attempts to accelerate the motor in the direction selected up to 3/4 x rated load rpm and then back to standstill. The drive uses rated torque/16, but if the motor cannot be accelerated to the required speed the drive then increases the torque progressively to x¹/₈, x¹/₄, x¹/₂ and x1 rated torque. If the required speed is not achieved on the final attempt the test is aborted and a tunE1 trip is initiated. If the test is successful the acceleration and deceleration times are used to calculate the motor and load inertia which is then written

to Pr 3.18. The motor map parameters must be set up correctly including the power factor before performing an inertia measurement test. To perform an Inertia measurement autotune, set Pr 0.40 to 3, and provide the drive with both an enable signal (on terminal 31) and a run

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the Drive enable signal from terminal 31, setting the drive enable parameter Pr 6.15 to OFF (0) or disabling the drive via the control word (Pr 6.42 & Pr 6.43).

Pr 0.38 {4.13} / Pr 0.39 {4.14} Current loop gains

The current loop gains proportional (Kp) and integral (Ki) gains control the response of the current loop to a change in current (torque) demand. The default values give satisfactory operation with most motors. However, for optimal performance in dynamic applications it may be necessary to change the gains to improve the performance. The proportional gain (Pr 4.13) is the most critical value in controlling the performance. The values for the current loop gains can be calculated by one of the following:

- During a stationary or rotating autotune (see Autotune Pr 0.40, earlier in this table) the drive measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor and calculates the current loop gains.
- By setting Pr 0.40 to 4 the drive will calculate the current loop gains from the values of stator resistance (Pr 5.17) and transient inductance (Pr 5.24) set in the drive.

This will give a step response with minimum overshoot after a step change of current reference. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth; however, this gives a step response with approximately 12.5% overshoot. The equation for the integral gain gives a conservative value. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed RFC induction motor applications) the integral gain may need to have a significantly higher value.

Pr 3.42 Drive encoder filter

In RFC mode Pr 3.42 defines a filter on the output of the speed estimator which is used as the speed feedback. A filter with a 4ms time constant is always present on the output of the speed estimator, but this filter may be extended as follows:

0 = 4 ms, 1 = 8 ms, 2 = 16 ms, 3 = 32 ms, 4 = 64 ms, 5 = 128 ms.

The output of the speed estimator can include some ripple, which increases as the drive passes into field weakening and the filter can be used to remove this ripple. This is particularly useful when using standard ramp or spinning start with a low friction, high inertia load, and can prevent over voltage trips when the drive has no braking resistor.

Pr 5.40 Spin start boost

If Pr 6.09 is set to enable the catch a spinning motor function in open-loop mode or RFC modes, this parameter defines a scaling function used by the algorithm that detects the speed of the motor. It is likely that for smaller motors (~4kW) the default value of 1.0 is suitable, but for larger motors this parameter may need to be increased. If the value of this parameter is too large the motor may accelerate from standstill when the drive is enabled. If the value of this parameter is too small the drive will detect the motor speed as zero even if the motor is spinning.

115 Affinity User Guide Issue Number: 3

SMARTCARE Optimization PC tools Diagnostics Information Data Information Installation Installation Started parameters operation narameters Information

Speed loop gains (Pr 0.07 {3.10}, Pr 0.08 {3.11}, Pr 0.09 {3.12})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr 3.16. If Pr 3.16 = 0, gains Kp1, Ki1 and Kd1 (Pr 0.07 to Pr 0.09) are used, and if Pr 3.16 = 1, gains Kp2, Ki2 and Kd2 (Pr 3.13 to Pr 3.15) are used. Pr 3.16 may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr **3.17**.

Proportional gain (Kp), Pr 0.07 (3.10) and Pr 3.13

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantization becomes unacceptable, or the stability limit is reached.

Integral gain (Ki), Pr 0.08 (3.11) and Pr 3.14

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application. For RFC mode, it is unlikely that the integral gain can be increased much above 0.50.

Differential gain (Kd), Pr 0.09 (3.12) and Pr 3.15

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

There are three methods of tuning the speed loop gains dependant on the setting of Pr 3.17:

1. Pr **3.17** = 0, User set-up.

This involves the connecting of an oscilloscope to analog output 1 to monitor the speed feedback.

Give the drive a step change in speed reference and monitor the response of the drive on the oscilloscope.

The proportional gain (Kp) should be set up initially. The value should be increased up to the point where the speed overshoots and then reduced slightly.

The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly.

It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown.

The diagram shows the effect of incorrect P and I gain settings as well as the ideal response.

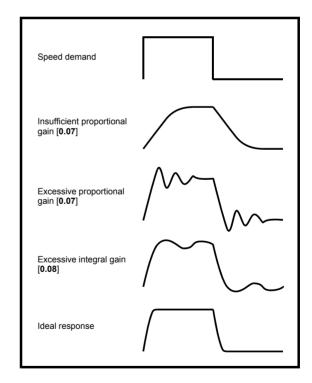
Pr 3.17 = 1, Bandwidth set-up

If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

Pr 3.20 - Required bandwidth,

Pr 3.21 - Required damping factor,

Pr 3.18 - Motor and load inertia. The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr 0.40, earlier in this table).


3. Pr 3.17 = 2, Compliance angle set-up

If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

Pr 3.19 - Required compliance angle,

Pr 3.21 - Required damping factor,

Pr 3.18 - Motor and load inertia The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr 0.40, earlier in this table)

Safety Optimization PC tools Diagnostics Information Information Installation Installation Started parameter the moto operation parameters Data

8.2 **Current limits**

The default settings for the current limit parameters are:

- 113% x motor rated current for open loop mode
- 114% x motor rated current for RFC mode

There are three parameters which control the current limits:

- Motoring current limit: power flowing from the drive to the motor
- Regen current limit: power flowing from the motor to the drive
- Symmetrical current limit: current limit for both motoring and regen

The lowest of either the motoring and regen current limit, or the symmetrical current limit applies.

The maximum setting of these parameters depends on the values of motor rated current, drive rated current and the power factor.

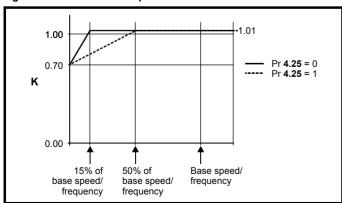
The drive can be oversized to permit a higher current limit setting to provide higher accelerating torque as required up to a maximum of 1000%.

8.3 Motor thermal protection

The drive models the temperature of the motor using the motor rated current (Pr 5.07), the thermal time constant (Pr 4.15), whether low speed thermal protection mode has been enabled (Pr 4.25) and the actual current flowing at any point in time. Pr 4.19 gives the estimated motor temperature as a percentage of maximum temperature.

The temperature of the motor (Pr 4.19) as a percentage of maximum temperature, with a constant current magnitude of I, constant value of K and constant value of Motor rated current (Pr 5.07) after time t is given

Percentage motor temperature (Pr **4.19**) = I^2 / (K x Motor rated current)²] (1 - $e^{-t/\tau}$) x 100%


This assumes that the maximum allowed motor temperature is produced by K x Motor rated current and that τ is the thermal time constant of the point in the motor that reaches its maximum allowed temperature first, τ is defined by Pr 4.15. If Pr 4.15 has a value between 0.0 and 1.0 the thermal time constant is taken as 1.0.

The value of K is defined as shown in Figure 8-1.

Pr 4.25 can be used to select two alternative protection characteristics.

If Pr 4.25 is 0 the characteristic is for a motor which can operate at rated current over the whole speed range. Induction motors with this type of characteristic normally have forced cooling. If Pr 4.25 is 1 the characteristic is intended for motors where the cooling effect of motor fan reduces with reduced motor speed below 50% of base speed/ frequency. The maximum value for K is 1.05, so that above the knee of the characteristics the motor can operate continuously up to 105% current.

Figure 8-1 Motor thermal protection

Both settings of Pr 4.25 are intended for motors where the cooling effect of the motor fan reduces with reduced motor speed, but with different speeds below which the cooling effect is reduced. If Pr 4.25 is 0 the characteristic is intended for motors where the cooling effect reduces

with motor speed below 15% of base speed/frequency. If Pr 4.25 is 1 the characteristic is intended for motors where the cooling effect reduces with motor speed below 50% of base speed/frequency. The maximum value for K is 1.01, so that above the knee of the characteristics the motor can operate continuously up to 101% current.

When the estimated temperature in Pr 4.19 reaches 100% the drive takes some action depending on the setting of Pr 4.16. If Pr 4.16 is 0, the drive trips when Pr 4.19 reaches 100%. If Pr 4.16 is 1, the current limit is reduced to (K - 0.05) x 100% when Pr 4.19 reaches 100%. The current limit is set back to the user defined level when Pr 4.19 falls below 95%. The thermal model temperature accumulator is reset to zero at power-up and accumulates the temperature of the motor while the drive remains powered-up. If the rated current defined by Pr 5.07 is altered, the accumulator is reset to zero.

The default setting of the thermal time constant (Pr 4.15) is 89s, which is equivalent to an overload of 150% for 60s from cold.

The time for the drive to trip from cold with constant motor current is

$$T_{trip} = -(Pr 4.15) \times In(1 - (K \times Pr 5.07 / Pr 4.01)^2)$$

Alternatively the thermal time constant can be calculated from the trip time with a given current from:

Pr **4.15** =
$$-T_{trip} / ln(1 - (K / Overload)^2)$$

The maximum value for the thermal time constant can be increased up to a maximum value of 3000s to allow an increased overload if the motor thermal characteristics permit.

Fire Mode - important warning.

When Fire Mode is active the motor overload and thermal protection are disabled, as well as a number of drive protection functions. Fire Mode is provided for use only in emergency situations where the safety risk from disabling protection is less than the risk from the drive tripping typically in smoke extraction operation to permit evacuation of a building. The use of Fire Mode itself causes a risk of fire from overloading of the motor or drive, so it must only be used after careful consideration of the balance of risks.

Care must be taken to prevent inadvertent activation or deactivation of Fire Mode. Fire Mode is indicated by a flashing display text warning "Fire mode active".

Care must be taken to ensure that parameters Pr 1.53 or Pr 1.54 are not inadvertently re-allocated to different inputs or variables. It should be noted that, by default, Pr 1.54 is controlled from digital input 4 and changing Pr 6.04 or Pr 8.24 can re-allocate this digital input to another parameter. These parameters are at access level 2 in order to minimise the risk of inadvertent or unauthorized changes. It is recommended that User Security be applied to further reduce the risk (see section 5.10 Parameter access level and security on page 90). These parameters may also be changed via serial communications so adequate precautions should be taken if this functionality is utilised.

Safety Product Mechanical Electrical SMARTCARE **UL** Listing Optimization PC tools Diagnostics Information operation Information Installation Installation Started parameters the moto narameters Data Information

8.4 Switching frequency

The default switching frequency is 3kHz, however this can be increased up to a maximum of 16kHz by Pr 5.18 (dependent on drive size). The available switching frequencies are shown below.

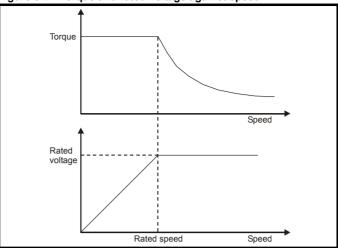
Table 8-1 Available switching frequencies

Drive size	Model	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
1	All	✓	✓	✓	✓	✓	✓
2	All	✓	√	√	✓	√	✓
	BA320X	✓	✓	✓	✓	✓	
3	BA3401 & BA3402	✓	✓	✓	✓	✓	✓
	BA3403	✓	✓	✓	✓	✓	
	BA350X	✓	✓	✓	✓		
4	All	✓	✓	✓	✓		
5	All	✓	✓	✓	✓		
6	All	✓	✓	✓			

If switching frequency is increased from 3kHz the following apply:

- 1. Increased heat loss in the drive, which means that derating to the output current must be applied.
 - See the derating tables for switching frequency and ambient temperature in section 12.1.1 Power and current ratings (Derating for switching frequency and temperature) on page 214.
- Reduced heating of the motor due to improved output waveform
- Reduced acoustic noise generated by the motor.
- Increased sample rate on the speed and current controllers. A trade off must be made between motor heating, drive heating and the demands of the application with respect to the sample time required.

Table 8-2 Sample rates for various control tasks at each switching frequency


	3, 6, 12 kHz	4, 8, 16 kHz	Open loop	RFC		
Level 1	3kHz = 167μs 6kHz = 83μs 12kHz = 83μs	125µs	Peak limit	Current controllers		
Level 2	250μs	,	Current limit and ramps	Speed controller and ramps		
Level 3	1ms		Voltage	controller		
Level 4	4ms		Time critical user interface			
Background			Non-time critical user interface			

8.5 High speed operation

8.5.1 Field weakening (constant power) operation

The drive can be used to run an induction machine above synchronous speed into the constant power region. The speed continues to increase and the available shaft torque reduces. The characteristics below show the torque and output voltage characteristics as the speed is increased above the rated value.

Figure 8-2 Torque and rated voltage against speed

Care must be taken to ensure the torque available above base speed is sufficient for the application to run satisfactorily.

The saturation breakpoint parameters (Pr 5.29 and Pr 5.30) found during the autotune in RFC mode ensure the magnetising current is reduced in the correct proportion for the specific motor. (In open loop mode the magnetising current is not actively controlled.)

Switching frequency

With a default switching frequency of 3 kHz the maximum output frequency should be limited to 250 Hz. Ideally a minimum ratio of 12:1 should be maintained between the output frequency and the switching frequency. This ensures the number of switchings per cycle is sufficient to ensure the output waveform quality is maintained at a minimum level. If this is not possible, quasi-square switching should be enabled (Pr 5.20 =1). The output waveform will be quasi square above base speed ensuring a symmetrical output waveform, which results in a better quality output than would otherwise result.

Maximum speed / frequency

In open loop mode the maximum frequency is 3,000 Hz.

In RFC mode the maximum output frequency is 400 Hz.

8.5.4 Quasi-Square wave (open-loop only)

The maximum output voltage level of the drive is normally limited to an equivalent of the drive input voltage minus voltage drops within the drive (the drive will also retain a few percent of the voltage in order to maintain current control). If the motor rated voltage is set at the same level as the supply voltage, some pulse deletion will occur as the drive output voltage approaches the rated voltage level. If Pr 5.20 (Quasi-square wave enable) is set to 1 the modulator will allow over modulation, so that as the output frequency increases beyond the rated frequency the voltage continues to increase above the rated voltage. The modulation depth will increase beyond unity; first producing trapezoidal and then quasi-square waveforms.

This can be used for example:

To obtain high output frequencies with a low switching frequency which would not be possible with space vector modulation limited to unity modulation depth,

or

In order to maintain a higher output voltage with a low supply

The disadvantage is that the machine current will be distorted as the modulation depth increases above unity, and will contain a significant amount of low order odd harmonics of the fundamental output frequency. The additional low order harmonics cause increased losses and heating in the motor.

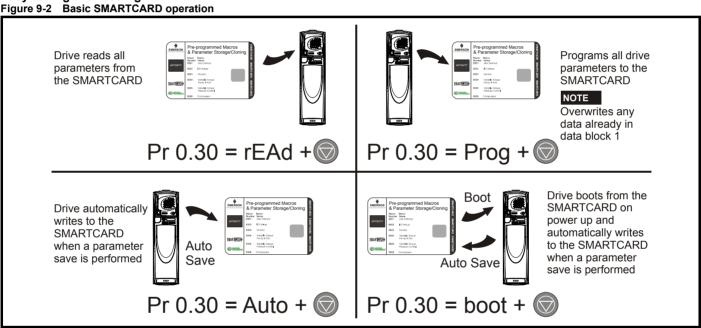
Safety **UL** Listing Optimization PC tools Diagnostics Information operation Information Installation Installation parameters Information

9 **SMARTCARD** operation

9.1 Introduction

This is a standard feature that enables simple configuration of parameters in a variety of ways. The SMARTCARD can be used for:


- Parameter copying between drives
- Saving whole drive parameter sets
- Saving 'differences from default' parameter sets
- Storing Onboard PLC programs
- Automatically saving all user parameter changes for maintenance purposes
- Loading complete motor map parameters
- Loading complete predefined macros
- Loading complete predefined macros


The SMARTCARD is located at the top of the module under the drive display (if installed) on the left-hand side. Ensure the SMARTCARD is inserted with the contacts facing the right-hand side of the drive.

The drive only communicates with the SMARTCARD when commanded to read or write, meaning the card may be "hot swapped".

The SMARTCARD supplied with the drive contains predefined application macros. See the Affinity Macro Guide for further information.

Easy saving and reading Figure 9-2 Basic SMARTCARD operation

The SMARTCARD has 999 individual data block locations. Each individual location from 1 to 499 can be used to store data until the capacity of the SMARTCARD is used. The drive can support SMARTCARDs with a capacity of between 4kB and 512kB.

The data block locations of the SMARTCARD are arranged to have the following usage:

Table 9-1 SMARTCARD data blocks

Data Block	Туре	Example Use
1 to 499	Read / Write	Application set ups
500 to 999	Read Only	Macros

'Differences from default' parameter sets will be much smaller than whole parameter sets and thus take up a lot less memory as most applications only require a few parameters to be changed from the default setting.

The whole card may be protected from writing or erasing by setting the read-only flag as detailed section 9.2.9 9888 / 9777 - Setting and clearing the SMARTCARD read only flag on page 121.

Data transfer to or from the SMARTCARD is indicated by one the following:

Keypad: The symbol 'CC' will appear in the lower left hand corner of the display

The card should not be removed during data transfer, as the drive will produce a trip. If this occurs then either the transfer should be reattempted or in the case of a card to drive transfer, default parameters should be loaded.

SMARTCARD Safety Product Mechanical Optimization PC tools Diagnostics Information operation Information Installation Installation Started parameters the moto narameters Data Information

9.2 Transferring data

Data transfer, erasing and protecting the information is performed by entering a code in Pr xx.00 and then resetting the drive as shown in

Table 9-2 SMARTCARD codes

Code	Action
2001	Transfer drive parameters as difference from defaults to a bootable SMARTCARD block in data block number 001
Зууу	Transfer drive parameters to a SMARTCARD block number yyy
4ууу	Transfer drive data as difference from defaults to SMARTCARD block number yyy
5ууу	Transfer drive Onboard PLC program to SMARTCARD block number yyy
6ууу	Transfer SMARTCARD data block yyy to the drive
7ууу	Erase SMARTCARD data block yyy
8ууу	Compare drive parameters with block yyy
9555	Clear SMARTCARD warning suppression flag (V01.07.00 and later)
9666	Set SMARTCARD warning suppression flag (V01.07.00 and later)
9777	Clear SMARTCARD read-only flag
9888	Set SMARTCARD read-only flag
9999	Erase SMARTCARD

Where yyy indicates the block number 001 to 999. See Table 9-1 for restrictions on block numbers.

NOTE

If the read only flag is set then only codes 6yyy or 9777 are effective.

Writing to the SMARTCARD

3vvv - Transfer data to the SMARTCARD

The data block contains the complete parameter data from the drive, i.e. all user save (US) parameters except parameters with the NC coding bit set. Power-down save (PS) parameters are not transferred to the SMARTCARD.

4yyy - Write default differences to a SMARTCARD

The data block only contains the parameter differences from the last time default settings were loaded.

Six bytes are required for each parameter difference. The data density is not as high as when using the 3yyy transfer method as described in the previous section, but in most cases the number of differences from default is small and the data blocks are therefore smaller. This method can be used for creating drive macros. Power-down save (PS) parameters are not transferred to the SMARTCARD.

The data block format is different depending on the software version. The data block holds the following parameters:

All user save (US) parameters including those that do not have a default value, but not including those with the NC (Not copied) coding bit set can be transferred to the SMARTCARD. In addition to these parameters all menu 20 parameters (except Pr 20.00), can be transferred to the SMARTCARD even though they are not user save parameters and have the NC coding bit set.

It is possible to transfer parameters between drives with each of the different formats, however, the data block compare function does not work with data produced by different formats.

Writing a parameter set to the SMARTCARD (Pr 11.42 = Prog

Setting Pr 11.42 to Prog (2) and resetting the drive will save the parameters to the SMARTCARD, i.e. this is equivalent to writing 3001 to Pr xx.00. All SMARTCARD trips apply except 'C.Chg'. If the data block already exists it is automatically overwritten. When the action is complete this parameter is automatically reset to nonE (0).

9.2.2 Reading from the SMARTCARD

6yyy - Read default differences from a SMARTCARD

When the data is transferred back to a drive, using 6yyy in Pr xx.00, it is transferred to the drive RAM and the drive EEPROM. A parameter save is not required to retain the data after power-down. Set up data for any Solutions Modules installed are stored on the card and are transferred to the destination drive. If the Solutions Modules are different between the source and destination drive, the menus for the slots where the Solutions Module categories are different are not updated from the card and will contain their default values after the copying action. The drive will produce a 'C.Optn' trip if the Solutions Modules installed to the source and destination drive are different or are in different slots. If the data is being transferred to a drive of a different voltage or current rating a 'C.rtg' trip will occur.

The following drive rating dependant parameters (RA coding bit set) will not be transferred to the destination drive by a SMARTCARD when the rating of the destination drive is different from the source drive and the file is a parameter file (i.e. created using the 3yyy transfer method). However, drive rating dependent parameters will be transferred if only the current rating is different and the file is a differences from default type file (i.e. created using the 4yyy transfer method). If drive rating dependant parameters are not transferred to the destination drive they will contain their default values.

Pr 2.08 Standard ramp voltage

Pr 4.05 to Pr 4.07 and Pr 21.27 to Pr 21.29 Current limits

Pr 4.24, User current maximum scaling

Pr 5.07, Pr 21.07 Motor rated current

Pr 5.09, Pr 21.09 Motor rated voltage

Pr 5.10, Pr 21.10 Rated power factor Pr 5.17, Pr 21.12 Stator resistance

Pr 5.18 Switching frequency

Pr 5.23, Pr 21.13 Voltage offset

Pr 5.24, Pr 21.14 Transient inductance

Pr 5.25. Pr 21.24 Stator inductance

Pr 6.06 DC injection braking current

Pr 6.48 Line power supply loss ride through detection level

Reading a parameter set from the SMARTCARD (Pr 11.42 = rEAd (1))

Setting Pr 11.42 to rEAd (1) and resetting the drive will transfer the parameters from the card into the drive parameter set and the drive EEPROM, i.e. this is equivalent to writing 6001 to Pr xx.00. All SMARTCARD trips apply. Once the parameters are successfully copied this parameter is automatically reset to nonE (0). Parameters are saved to the drive EEPROM after this action is complete.

This operation is only performed if data block 1 on the card is a full parameter set (3vvv transfer) and not a default difference file (4vvv transfer). If block 1 does not exist a 'C.dAt' trip occurs.

9.2.3 Auto saving parameter changes (Pr 11.42 = Auto (3))

This setting causes the drive to automatically save any changes made to menu 0 parameters on the drive to the SMARTCARD. The latest menu 0 parameter set in the drive is therefore always backed up on the SMARTCARD. Changing Pr 11.42 to Auto (3) and resetting the drive will immediately save the complete parameter set from the drive to the card, i.e. all user save (US) parameters except parameters with the NC coding bit set. Once the whole parameter set is stored only the individual modified menu 0 parameter setting is updated.

Advanced parameter changes are only saved to the card when Pr xx.00 is set to a 1000 and the drive reset.

All SMARTCARD trips apply, except 'C.Chg'. If the data block already contains information it is automatically overwritten.

If the card is removed when Pr 11.42 is set to 3 Pr 11.42 is then automatically set to nonE (0).

When a new SMARTCARD is installed Pr 11.42 must be set back to Auto (3) by the user and the drive reset so the complete parameter set is rewritten to the new SMARTCARD if auto mode is still required.

Optimization PC tools Diagnostics operation Information Information Installation Installation Started parameters

When Pr 11.42 is set to Auto (3) and the parameters in the drive are saved, the SMARTCARD is also updated, therefore the SMARTCARD becomes a copy of the drives stored configuration.

At power up, if Pr 11.42 is set to Auto (3), the drive will save the complete parameter set to the SMARTCARD. The drive will display 'cArd' during this operation. This is done to ensure that if a user puts a new SMARTCARD in during power down the new SMARTCARD will have the correct data.

When Pr 11.42 is set to Auto (3) the setting of Pr 11.42 itself is saved to the drive EEPROM but NOT to the SMARTCARD.

Booting up from the SMARTCARD on every power up (Pr 11.42 = boot (4))

When Pr 11.42 is set to boot (4) the drive operates the same as Auto mode except when the drive is powered-up. The parameters on the SMARTCARD will be automatically transferred to the drive at power up if the following are true:

- A card is inserted in the drive
- Parameter data block 1 exists on the card
- The data in block 1 is type 1 to 5 (as defined in Pr 11.38)
- Pr 11.42 on the card set to boot (4)

The drive will display 'boot' during this operation. If the drive mode is different from that on the card, the drive gives a 'C.Typ'. trip and the data is not transferred

If 'boot' mode is stored on the copying SMARTCARD this makes the copying SMARTCARD the master device. This provides a very fast and efficient way of re-programming a number of drives.

If data block 1 contains a bootable parameter set and data block 2 contains an Onboard PLC program (type 17 as defined in Pr 11.38), then the onboard PLC program will be transferred to the drive at power up along with the parameter set in data block 1.

NOTE

'Boot' mode is saved to the card, but when the card is read, the value of Pr 11.42 is not transferred to the drive.

Booting up from the SMARTCARD on every power up (Pr xx.00 = 2001)

It is possible to create a difference from default bootable file by setting Pr xx.00 to 2001 and resetting the drive. This type of file causes the drive to behave in the same way at power-up as a file created with boot mode set up with Pr 11.42. The difference from the default file is that it has the added advantage of including menu 20 parameters.

Setting Pr xx.00 to 2001 will overwrite data block 1 on the card if it already exists.

If a data block 2 exists and contains an Onboard PLC program (type 17 as defined in Pr 11.38), this will also be loaded after the parameters have been transferred

A bootable difference from default file can only be created in one operation and parameters cannot be added as they are saved via menu 0.

9.2.6 8yyy - Comparing the drive full parameter set with the SMARTCARD values

Setting 8yyy in Pr xx.00, will compare the SMARTCARD file with the data in the drive. If the compare is successful Pr xx.00 is simply set to 0. If the compare fails a 'C.cpr' trip is initiated.

7yyy / 9999 - Erasing data from the SMARTCARD

Data can be erased from the SMARTCARD either one block at a time or all blocks in one go.

- Setting 7yyy in Pr xx.00 will erase SMARTCARD data block yyy.
- Setting 9999 in Pr xx.00 will erase all SMARTCARD data blocks

9666 / 9555 - Setting and clearing the SMARTCARD warning suppression flag

If the Solutions Modules installed to the source and destination drive are different or are in different slots the drive will produce a 'C.Optn' trip. If the data is being transferred to a drive of a different voltage or current

rating a 'C.rtg' trip will occur. It is possible to suppress these trips by setting the warning suppression flag. If this flag is set the drive will not trip if the Solutions Module(s) or drive ratings are different between the source and destination drives. The Solutions Module or rating dependent parameters will not be transferred.

- Setting 9666 in Pr xx.00 will set the warning suppression flag
- Setting 9555 in Pr xx.00 will clear the warning suppression flag

9888 / 9777 - Setting and clearing the SMARTCARD read only flag

The SMART CARD may be protected from writing or erasing by setting the read only flag. If an attempt is made to write or erase a data block when the read only flag is set, a 'C.rdo' trip is initiated. When the read only flag is set only codes 6yyy or 9777 are effective.

- Setting 9888 in Pr xx.00 will set the read only flag
- Setting 9777 in Pr xx.00 will clear the read only flag.

9.3 Data block header information

Each data block stored on a SMARTCARD has header information detailing the following:

- A number which identifies the block (Pr 11.37)
- The type of data stored in the block (Pr 11.38)
- The drive mode if the data is parameter data (Pr 11.38)
- The version number (Pr 11.39)
- The checksum (Pr 11.40)
- The read-only flag
- The warning suppression flag

The header information for each data block which has been used can be viewed in Pr 11.38 to Pr 11.40 by increasing or decreasing the data block number set in Pr 11.37.

If Pr 11.37 is set to 1000 the checksum parameter (Pr 11.40) shows the number of 16 byte pages left on the card.

If Pr 11.37 is set to 1001 the checksum parameter (Pr 11.40) shows the total capacity of the card in 16 byte pages. Therefore, for a 4kB card this parameter would show 254.

If Pr 11.37 is set to 1002 the checksum parameter (Pr 11.40) shows the state of the read-only (bit 0) and warning suppression flags (bit 1).

If Pr 11.37 is set to 1003, the checksum parameter (Pr 11.40) shows the product identifier (255 = Unidrive SP, 1 = Commander GP20, 2 = Digitax ST, 3 = Affinity).

If there is no data on the card Pr 11.37 can only have values of 0 or 1000 to 1003.

9.4 SMARTCARD parameters

Table 9-3 Key to parameter table coding

			_		
RW	Read / Write	RO	Read only	Uni	Unipolar
Bi	Bi-polar	Bit	Bit parameter	Txt	Text string
FI	Filtered	DE	Destination	NC	Not copied
RA	Rating dependent	PT	Protected	US	User save
PS	Power down save				

,	11.	36 {	(0.29)	SMAR	TCAR	D paraı	net	er d	ata pre	eviousl	y loade	ed
	R	C	Uni						NC	PT	US	
ĵ	ţ	0 to 999					\Rightarrow			0		

This parameter shows the number of the data block last transferred from a SMARTCARD to the drive.

	11.3	37	SMAR	TCARI	D data	nun	nbe	r		
R۷	N	Uni						NC		
Û	0 to 1003					\Diamond			0	

This parameter should have the data block number entered for which the user would like information displayed in Pr 11.38, Pr 11.39 and Pr 11.40.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

11.38			SMAR						
R	O Txt						NC	PT	
Û	0 to 18					\Diamond			

Gives the type/mode of the data block selected with Pr 11.37:

Pr 11.38	String	Type/mode	Data stored
0	FrEE	Value when Pr 11.37 = 0, 1000 to 1003	
1		Reserved	
2	3OpEn.LP	Open-loop mode parameters	
3	3 rfc	RFC mode parameters	
4		Reserved	
5		Reserved	Data from
6 to 8	3Un	Unused	EEPROM
9		Reserved	
10	40pEn.LP	Open-loop mode parameters	
11	4 rfc	RFC mode parameters	
12		Reserved	Defaults last
13		Reserved	loaded and
14 to 16	4Un	Unused	differences
17	LAddEr	Onboard PLC program	
18	Option	A Solutions Module file	

	11.	39	SMAR	TCAR	D data	ver	sior	1		
R۱	N	Uni					NC			
\hat{v}	0 to 9,999					$\hat{\Box}$			0	

Gives the version number of the data block selected in Pr 11.37.

	11.4	40	SMARTCARD data checksum										
R	RO Uni							NC	PT				
Û	0 to 65,335												

Gives the checksum of the data block selected in Pr 11.37.

11.	42 {	(0.30)	Param	eter c	opying					
R۱	RW Txt						NC		US*	
Û	0 to 4					$\hat{\mathbb{T}}$		nonE	(0)	

If Pr 11.42 is equal to 1 or 2, this value is not transferred to the drive or saved to the EEPROM. If Pr 11.42 is set to a 3 or 4 the value is transferred.

nonE (0) = Inactive

rEAd (1) = Read parameter set from the SMARTCARD

Prog (2) = Programming a parameter set to the SMARTCARD

Auto (3) = Auto save

boot (4) = Boot mode

Safety	Product	Mechanical	Electrical	Gettina	Basic	Runnina	0	SMARTCARD	DO 1 1	Advanced	Technical	D: "	UL Listina
Informati		Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

9.5 **SMARTCARD** trips

After an attempt to read, write or erase data to or from a SMARTCARD a trip may occur if there has been a problem with the command. The following trips indicate various problems as detailed in Table 9-4.

Table 9-4 Trip conditions

C.Acc SMARTCARD tip: SMARTCARD and / Write fail Check SMARTCARD is installed / located correctly Ensure SMARTCARD is installed / located correctly Replace SMARTCARD SMARTCARD Clboot SMARTCARD trip: The menu 0 parameter modification cannot be saved to the SMARTCARD because the necessary file has not been created on the SMARTCARD A write to a menu 0 parameter has been initiated via the keypad with Pr 11.42 set to auto(3) or boot(4), but the necessary file on the SMARTCARD has not been created Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Robert 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Robert 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Robert 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Robert 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Robert 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Robert 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Robert 11.42 is correctly solutions Module to finish accessing the SMARTCARD and then re-attempt the required function C.Chy SMARTCARD trip: SMARTCARD trip: SMARTCARD and then re-attempt the required function Write data to an alternative data location C.chy SMARTCARD trip: To attain location alocation specified does not contain any data Brown and the state of the state of the drive and the values in the data block on the SMARTCARD are different SMARTCARD trip: SMARTCARD data is corrupted Ensure data block number is correct C.Err SMARTCARD trip: SMARTCARD data is corrupted Ensure data and retry SMARTCARD trip: SMARTCARD trip: SMARTCARD SMARTCARD trip: SMARTCARD trip: SMARTCARD SMARTCARD trip: SMARTCARD trip: SMARTCARD trip: SMARTCARD trip: Solutions Modules are installed Ensure correct Solutions Modules are in the same Solutions Module slot Pres	Trip	Diagnosis
Ensure SMARTCARD is not writing data to data location 500 to 999 Replace SMARTCARD is Replace SMARTCARD SMARTCARD trip: The menu 0 parameter modification cannot be saved to the SMARTCARD because the necessary file has not been created on the SMARTCARD A write to a menu 0 parameter has been initiated via the keypad with Pr 11.42 set to auto(3) or boot(4), but the necessary file on the SMARTCARD has not been created Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Reseatempt the parameter write to the menu 0 parameter C.bUSY SMARTCARD trip: SMARTCARD control perform the required function as it is being accessed by a Solutions Module 178 Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function C.chg SMARTCARD trip: Data location already contains data 179 Erase data in data location Write data to an alternative data location Write data to an alternative data location Write data to an alternative data location C.chg SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different 188 Press the red reset button C.dat SMARTCARD trip: SMARTCARD data is corrupted Ensure data block number is correct C.Err SMARTCARD trip: SMARTCARD full Ensure and retry Replace SMARTCARD trip: SMARTCARD full SMARTCARD trip: SMARTCARD full SMARTCARD trip: SMARTCARD full Bolete a data block or use a different SMARTCARD C.optn SMARTCARD trip: SMARTCARD modules installed are different between source drive and destination drive Ensure correct Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD has the Read onl	C.Acc	SMARTCARD trip: SMARTCARD Read / Write fail
not been created on the SMARTCARD A write to a menu to parameter has been initiated via the keypad with Pr 11.42 set to auto(3) or boot(4), but the necessary file on the SMARTCARD has not been created Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Re-attempt the parameter write to the menu 0 parameter C.b.USY SMARTCARD trip: SMARTCARD and parameter write to the menu 0 parameter Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function C.Chg SMARTCARD trip: Data location already contains data Erase data in data location Witle data to an alternative data location C.Gpr SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different 188 Press the red ⊚ reset button C.dat SMARTCARD trip: Data location specified does not contain any data Ensure data block number is correct C.Err SMARTCARD trip: SMARTCARD data is corrupted Ensure the card is located correctly Erase data and retry Replace SMARTCARD SMARTCARD trip: SMARTCARD full 184 Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules are installed Ensure correct Solutions Modules are installed Ensure correct Solutions Modules are installed Ensure solutions Modules are in the same Solutions Module slot Press the red ⊚ reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red ⊚ reset button Replace SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	185	Ensure SMARTCARD is not writing data to data location 500 to 999
SMARTCARD has not been created Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Re-attempt the parameter write to the menu 0 parameter C.BUSY SMARTCARD trip: SMARTCARD can not perform the required function as it is being accessed by a Solutions Module Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function C.Chig SMARTCARD trip: Data location already contains data Erase data in data location Write data to an alternative data location C.Cpr SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different 188 Press the red reset button C.dat SMARTCARD trip: Data location specified does not contain any data 183 Ensure data block number is correct C.Err SMARTCARD trip: SMARTCARD data is corrupted Ensure the card is located correctly Erase data and retry Replace SMARTCARD C.Full SMARTCARD trip: SMARTCARD full 184 Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules are installed Ensure correct Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	C.boot	·
Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function C.Chg SMARTCARD trip: Data location already contains data	177	SMARTCARD has not been created Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD
C.Chg SMARTCARD trip: Data location already contains data 179 Erase data in data location Write data to an alternative data location C.Cpr SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different 188 Press the red ⊚ reset button C.dat SMARTCARD trip: Data location specified does not contain any data 183 Ensure data block number is correct C.Err SMARTCARD trip: SMARTCARD data is corrupted Ensure the card is located correctly Erase data and retry Replace SMARTCARD C.Full SMARTCARD trip: SMARTCARD full 184 Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive Ensure correct Solutions Modules are in the same Solutions Module slot Press the red ⊚ reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product 175 Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red ⊚ reset button Replace SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	C.bUSY	SMARTCARD trip: SMARTCARD can not perform the required function as it is being accessed by a Solutions Module
Erase data in data location Write data to an alternative data location C.Cpr SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different 188 Press the red reset button C.dat SMARTCARD trip: Data location specified does not contain any data 183 Ensure data block number is correct C.Err SMARTCARD trip: SMARTCARD data is corrupted Ensure the card is located correctly Erase data and retry Replace SMARTCARD C.Full SMARTCARD trip: SMARTCARD full 184 Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive Ensure correct Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product 175 Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD C.rdo SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	178	Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function
Write data to an alternative data location C.Cpr SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different 188 Press the red reset button C.dat SMARTCARD trip: Data location specified does not contain any data 183 Ensure data block number is correct C.Err SMARTCARD trip: SMARTCARD data is corrupted Ensure the card is located correctly Erase data and retry Replace SMARTCARD C.Full SMARTCARD trip: SMARTCARD full 184 Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	C.Chg	SMARTCARD trip: Data location already contains data
Press the red	179	
C.dat SMARTCARD trip: Data location specified does not contain any data Ensure data block number is correct C.Err SMARTCARD trip: SMARTCARD data is corrupted Ensure the card is located correctly Erase data and retry Replace SMARTCARD C.Full SMARTCARD trip: SMARTCARD full 184 Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive Ensure correct Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product 175 Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	C.Cpr	SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different
Ensure data block number is correct C.Err SMARTCARD trip: SMARTCARD data is corrupted Ensure the card is located correctly Erase data and retry Replace SMARTCARD C.Full SMARTCARD trip: SMARTCARD full 184 Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button C.rdo SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	188	Press the red reset button
C.Err SMARTCARD trip: SMARTCARD data is corrupted Ensure the card is located correctly Erase data and retry Replace SMARTCARD C.Full SMARTCARD trip: SMARTCARD full 184 Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD C.rdo SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	C.dat	SMARTCARD trip: Data location specified does not contain any data
Ensure the card is located correctly Erase data and retry Replace SMARTCARD C.Full SMARTCARD trip: SMARTCARD full 184 Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product 175 Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD C.rdo SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	183	Ensure data block number is correct
Erase data and retry Replace SMARTCARD C.Full SMARTCARD trip: SMARTCARD full 184 Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product 175 Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button C.rdo SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	C.Err	SMARTCARD trip: SMARTCARD data is corrupted
Delete a data block or use a different SMARTCARD C.Optn SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	182	Erase data and retry
C.Optn SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	C.Full	SMARTCARD trip: SMARTCARD full
Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD C.rdo SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	184	Delete a data block or use a different SMARTCARD
Ensure Solutions Modules are in the same Solutions Module slot Press the red reset button C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD C.rdo SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	C.Optn	·
C.Prod SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD C.rdo SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	180	Ensure Solutions Modules are in the same Solutions Module slot
Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD C.rdo SMARTCARD trip: SMARTCARD has the Read only bit set Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access	C Prod	
Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access		Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button
181	C.rdo	SMARTCARD trip: SMARTCARD has the Read only bit set
	181	

Cofoty	Droduct	Machanical	Flootrical	Cotting	Doois	Dunning		SMARTCARD		Advanced	Toohnical		UL Listina
Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	· ·	PC tools	Advanced	recrimical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	optzatio	operation		parameters	Data	Diagnosiiss	Information

Table 9-4 Trip conditions

Trip		Diagnosis									
C.rtg	SMARTCARD trip: The volt	age and/or current rating of the source and destination drives	are different								
	different voltage and current when the rating of the destination	neters (parameters with the RA coding) are likely to have different varatings. Parameters with this attribute will not be transferred to the cation drive is different from the source drive and the file is a paramete transferred if only the current rating is different and the file is a different	destination drive by SMARTCARDs ter file. However, drive rating								
	Parameter	Function									
	2.08	Standard ramp voltage									
	4.05/6/7, 21.27/8/9	Current limits									
	4.24	User current maximum scaling									
186	5.07, 21.07	Motor rated current									
	5.09, 21.09	Motor rated voltage									
	5.10, 21.10	Rated power factor									
	5.17, 21.12	Stator resistance									
	5.18	Switching frequency									
	5.23, 21.13	Voltage offset									
	5.24, 21.14	Transient inductance									
	5.25, 21.24	Stator inductance									
	6.06	DC injection braking current									
	6.48	Line power supply loss ride through detection level									
	The above parameters will be	The above parameters will be set to their default values.									
С.Тур	SMARTCARD trip: SMART	CARD parameter set not compatible with drive									
187	Press the red reset butt	on s is the same as the source parameter file drive type									

Table 9-5 SMARTCARD status indications

Lower display	Description	Lower display	Description
boot	A parameter set is being transferred from the	cArd	The drive is writing a parameter set to the SMARTCARD
	SMARTCARD to the drive during power-up. For further		during power-up.
	information, please refer to section 9.2.4 Booting up		For further information, please refer to section
	from the SMARTCARD on every power up (Pr 11.42 =		9.2.3 Auto saving parameter changes (Pr 11.42 = Auto
	boot (4)) .		(3)).

Safety Product Getting Optimization PC tools Diagnostics Information Information Information Installation Installation Started parameters the moto operation parameters Data

PC tools 10

10.1 **AffinitySoft**

AffinitySoft is a Windows™ based software commissioning/start-up tool for Affinity and other Control Techniques products.

AffinitySoft can be used for commissioning/start-up and monitoring, drive parameters can be uploaded, downloaded and compared, and simple or custom menu listings can be created. Drive menus can be displayed in standard list format or as live block diagrams. AffinitySoft is able to communicate with a single drive or a network.

AffinitySoft can be found on the CD which is supplied with the drive and is also available for download from www.controltechniques.com (file size approximately 25MB).

AffinitySoft system requirements:

- Windows 2000/XP. Windows 95/98/98SE/ME/NT4 and Windows 2003 server are NOT supported
- Internet Explorer V5.0 or later must be installed
- Minimum of 800x600 screen resolution with 256 colours. 1024x768 is recommended
- 128MB RAM
- Pentium III 500MHz or better recommended.
- Adobe Acrobat Reader 5.1 or later (for parameter help). See CD
- Microsoft.Net Framework 2.0
- Note that you must have administrator rights under Windows 2000/ XP to install.

Included with AffinitySoft are the user guides for the supported drive models. When help on a particular parameter is request by the user, AffinitySoft links to the parameter in the relevant advanced user guide.

10.1.1 Installing AffinitySoft

To install AffinitySoft from the CD, insert the CD and the auto-run facility should start up the front-end screen from which AffinitySoft can be selected. Otherwise run the SETUP.EXE in the AffinitySoft folder. Any previous copy of AffinitySoft should be uninstalled before proceeding with the installation (existing projects will not be lost).

Uninstalling AffinitySoft 10.1.2

To uninstall AffinitySoft, go to the Control Panel, select "Add and Remove Programs". Scroll down the list until "AffinitySoft" is found then click on "Change/Remove". Uninstalling will not lose any user project or data files.

10.1.3 **Communications Overview**

AffinitySoft operates in 2 basic communication modes:

In ONLINE mode AffinitySoft polls the selected drive to update all displayed parameter values. Any changes made to a parameter value will be displayed within AffinitySoft.

In OFFLINE mode AffinitySoft does not require any connection to a drive. Each parameter can be displayed and edited, and these alterations will only affect AffinitySoft's internal parameter set.

Getting started with AffinitySoft

Please refer to the Readme file available within the installation directory for the latest information.

During the startup of AffinitySoft a number of initialisation files are accessed. These files enable AffinitySoft to store and retrieve system, user specific and parameter data.

On initialisation, the startup dialog is displayed allowing you to create a new project, open a previously saved project, or to work with a drive which automatically creates a project and allows quick access to communicating with a single drive.

Before drive commissioning/start-up can proceed, it is necessary to set up the Communications port to enable communication between the host PC and drive. Select the "Drive" menu, and Properties, to open the Drive Properties dialog

Included in AffinitySoft are the Advanced User Guides for the supported drive models. When help on a particular parameter is requested by the

user, AffinitySoft links to the parameter in the relevant advanced user guide. Double-click the mouse on the required parameter and select parameter help from the displayed box

The following is a brief introduction to the functions available. Reference should be made to the AffinitySoft and drive Help files for more detailed

- The drive set-up wizard guides the novice user in entering motor and application data. Help is provided for each step in the set-up wizard and, after the data is downloaded to the drive, a guick motor test can be performed
- AffinitySoft will automatically update the screen with any read values.
- The Navigation Panel allows the user to move between the screens in AffinitySoft.
- The Terminal Configuration screens display graphically the choice of terminal set-up. They enable the quick and effective setting of parameters to achieve the terminal configuration desired, with no knowledge of the parameters being set-up. The Analog References screen also provides the ability to set-up the mode of operation of the analog inputs. The graphical wiring diagram required for basic control dynamically altering with respect to the user choice.
- The monitoring screens show the status motor parameters displayed on panel meters. Drive faults are displayed and the faults log shows the last ten trips with description and time.
- The parameter listings are used to display the entire contents of a menu. This allows access to parameters that are not available to the user within the graphical screens or block diagrams. Complete parameter upload and download functions are provided with the ability to save these to disk. Complete compare facilities enable the comparison of AffinitySoft's memory with a user saved parameter file or database defaults, highlighting any differences.
- The Custom list enables parameters to be added to a custom list made up of all available drive parameters. This enables the viewing of unrelated parameters on the same screen. Custom files may be saved by the user for use at a later date.
- Many of the menus have associated block diagrams that graphically indicate how all of the related parameters interact. To change a parameter value simply right-click on a parameter and select "Edit Parameter".

10.2 Onboard PLC and SYPTLite

The drive has the ability to store and execute a 4KB Onboard PLC ladder logic program without the need for additional hardware.

The ladder logic program is written using SYPTLite, a Windows™ based ladder diagram editor allowing the development of programs for execution in Affinity.

SYPTLite is designed to be easy to use and to make program development as simple as possible. The features provided are a sub-set of those in the SYPT program editor. SYPTLite programs are developed using ladder logic, a graphical language widely used to program PLCs (IEC61131-3). SYPTLite allows the user to "draw" a ladder diagram representing a program.

SYPTLite provides a complete environment for the development of ladder diagrams. Ladder diagrams can be created, compiled into user programs and downloaded to a Affinity for execution, via the RJ45 serial communications port on the front of the drive. The run-time operation of the compiled ladder diagram on the target can also be monitored using SYPTLite and facilities are provided to interact with the program on the target by setting new values for target parameters.

SYPTLite is available on the CD which is supplied with the drive.

10.2.1 **Benefits**

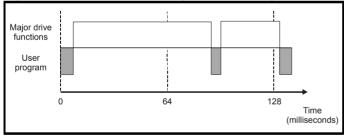
The combination of the Onboard PLC and SYPTLite, means that the drive can replace nano and some micro PLCs in many applications. The Onboard PLC programs can consist of up to a maximum of 50 ladder logic rungs (up to 7 function blocks and 10 contacts per rung). The Onboard PLC program can also be transferred to and from a SMARTCARD for backup or quick commissioning/start-up

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
IIIIOIIIIatioii	illolliation	motanation	motaliation	Otarica	parameters	tile illotoi		operation		parameters	Data		imomiation

In addition to the basic ladder symbols, SYPTLite contains a sub-set of the function from the full version of SYPT. These include,

- Arithmetic blocks
- Comparison blocks
- Timers
- Counters
- Multiplexers
- Latches
- Bit manipulation

Typical applications for the Onboard PLC include,


- Ancillary pumps
- Fans and control valves
- Interlocking logic
- Sequences routines
- Custom control words.

Limitations

The Onboard PLC program has the following limitations:

- The maximum program size is 4032 bytes including header and optional source code.
- The drive is rated for 100 program downloads. This limitation is imposed by the flash memory used to store the program within the drive
- The user cannot create user variables. The user is only able to manipulate the drive parameter set.
- There are no real-time tasks, i.e. the scheduling rate of the program cannot be guaranteed. Applications Modules tasks such as Clock, Event. Pos0 or Speed are not available. The Onboard PLC should not be used for time-critical applications. For time-critical applications Unidrive SP and an SM-Applications Plus, SM-Applications or SM-Applications Lite should be used.
- The program runs at a low priority. The drive provides a single background task in which to run a ladder diagram. The drive is prioritised to perform its major functions first, e.g. motor control, and will use any remaining processing time to execute the ladder diagram as a background activity. As the drive's processor becomes more heavily loaded, less time is spent executing the program.

Figure 10-1 Onboard PLC program scheduling

The user program is scheduled for a short period approximately once every 64ms. The time for which the program is scheduled will vary between 0.2ms and 2ms depending on the loading of the drive's processor.

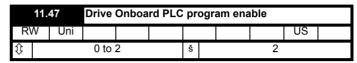
When scheduled, several scans of the user program may be performed. Some scans may execute in microseconds. However, when the main drive functions are scheduled there will be a pause in the execution of the program causing some scans to take many milliseconds. SYPTLite displays the average execution time calculated over the last 10 scans of the user program.

Getting started 10.2.3

SYPTLite can be found on the CD which is supplied with the drive.

SYPTLite system requirements

- Windows 2000/XP. Windows 95/98/98SE/Me/NT4 are not supported
- Pentium III 500MHz or better recommended
- 128MB RAM
- Minimum of 800x600 screen resolution. 1024x768 is recommended
- Adobe Acrobat 5.10 or later (for viewing User Guides)


- Microsoft Internet Explorer V5.0 or later
- RS232 to RS485, RJ45 communications lead to connect the PC to
- Administrator rights under Windows 2000/XP are required to install the software

To install SYPTLite, insert the CD and the auto-run facility should start up the front-end screen, from which SYPTLite can be selected.

See the SYPTLite help file for more information regarding using SYPTLite, creating ladder diagrams and the available function blocks.

Onboard PLC parameters

The following parameters are associated with the Onboard PLC program.

This parameter is used to start and stop the drive Onboard PLC program.

Value	Description
0	Halt the drive Onboard PLC program.
1	Run the drive Onboard PLC program (if installed). Any out-of-range parameter writes attempted will be clipped to the maximum / minimum values valid for that parameter before being written.
2	Run the drive Onboard PLC program (if installed). Any out-of-range parameter writes attempted will cause a 'UP ovr' trip.

	11.	48	Drive Onboard PLC program status										
R	O Bi							NC	PT				
Û	-128 to +127												

The drive Onboard PLC program status parameter indicates to the user the actual state of the drive Onboard PLC program.

Value	Description
-n	Onboard PLC program caused a drive trip due to an error condition while running rung n. Note that the rung number is shown on the display as a negative number.
0	Onboard PLC program is not installed.
1	Onboard PLC program is installed but stopped.
2	Onboard PLC program is installed and running.

When an Onboard PLC program is installed and running, the lower display of the drive flashes 'PLC' once every 10s.

	11.	49	Drive Onboard PLC programming events										
R	0	Uni						NC	PT		PS		
Û	0 to 65,535												

The drive Onboard PLC programming events parameter holds the number of times an Onboard PLC program download has taken place and is 0 on dispatch from the factory. The drive is rated for one hundred ladder program downloads. This parameter is not altered when defaults are loaded.

	11.50		Drive Onboard PLC program average scan time											
F	RO Uni							NC	PT					
Û	① to 65,535 ms													

This parameter is updated once per second or once per Onboard PLC program scan whichever is the longest. If more than one program scan occurs within the one second update period the parameter shows the average scan time. If the program scan time is longer than one second the parameter shows the time for the last program scan.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	- p	operation		parameters	Data	3	Information

1	11.	51	Drive Onboard PLC program first run										
RO)	Bit						NC	PT				
Û	OFF (0) or On (1)					š							

The Drive Onboard PLC program first run parameter is set for the duration of program scan from the stopped state. This enables the user to perform any required initialisation every time the program is run. This parameter is set every time the program is stopped.

Onboard PLC trips

The following trips are associated with the Onboard PLC program.

Trip	Diagnosis
UP ACC	Onboard PLC program: Cannot access Onboard PLC program file on drive
98	Disable drive - write access is not allowed when the drive is enabled. Another source is already accessing Onboard PLC program - retry once the other action is complete.
UP div0	Onboard PLC program attempted divide by zero
90	Check program
UP OFL	Onboard PLC program variables and function block calls using more than the allowed RAM space (stack overflow)
95	Check program
UP ovr	Onboard PLC program attempted out of range parameter write
94	Check program
UP PAr	Onboard PLC program attempted access to a non- existent parameter
91	Check program
UP ro	Onboard PLC program attempted write to a read-only parameter
92	Check program
UP So	Onboard PLC program attempted read of a write-only parameter
93	Check program
UP udF	Onboard PLC program undefined trip
97	Check program
UP uSEr	Onboard PLC program requested a trip
96	Check program

Onboard PLC and the SMARTCARD

The Onboard PLC program in a drive may be transferred from the drive to a SMARTCARD and vice versa.

- To transfer an Onboard PLC program from the drive to a SMARTCARD, set Pr xx.00 to 5yyy and reset the drive
- To transfer an Onboard PLC program from the SMARTCARD to a drive, set Pr xx.00 to 6yyy and reset the drive.

(Where yyy is the data block location, see Table 9-1 SMARTCARD data blocks on page 119 for restrictions on block numbers).

If an attempt is made to transfer an Onboard PLC program from a drive to the SMARTCARD when the drive contains no program, the block is still created on the SMARTCARD but it will contain no data. If this data block is then transferred to a drive, the destination drive will then have no Onboard PLC program.

The smallest SMARTCARD compatible with Affinity has a capacity of 4064 bytes and each block can be up to 4064 bytes in size. The maximum size of a user program is 4032 bytes so it is guaranteed that any Onboard PLC program downloaded to a Affinity will fit on to an empty SMARTCARD. A SMARTCARD can contain a number of Onboard PLC programs until the capacity of the card is used.

10.3 CT Energy Savings Estimator

CT Energy Savings Estimator is a Windows™ based tool for estimating electrical energy consumption and savings for fan and pump applications. It provides a comparison of energy usage for various control methods such as Variable Frequency Drive, outlet dampers, inlet vanes and valves.

The results, displayed in graphical and text format, are provided for energy usage, savings and payback. This data can be incorporated in customer reports which can be viewed, printed, e-mailed as a PDF file or exported to a file in PDF, RTF, HTML, GIF, BMP, JPG, TIF format.

CT Energy Savings Estimator can be found on the CD supplied with the

System Requirements

- Personal Computer or Notebook (Pentium or faster) running Windows 2000, XP, 2003 Server
- Memory: 256 MB RAM for Windows 2000/XP
- Monitor: VGA or higher with a minimum resolution of 800x600 (256 colours)
- Hard Disk: 15MB Available Disk Space
- Windows-compatible ink jet or laser printer for printing of reports
- Application Programming Interface (MAPI) to e-mail report (optional)

10.3.1 Installation

To install CT Energy Savings Estimator, insert the CD and run setup.exe

10.3.2

The following is a summary of the functions available. Further information is available in the help facility provided.

Program set up: allows changes to the following parameters

- Preferences: set up customer report information (name, address, contact, logo) enable use of pre-printed letterhead, enable welcome start-up message.
- Efficiency set up: efficiency data for VFD, damper, inlet vane and
- Custom efficiency: efficiency data for custom applications
- Report Layout: company address and logo

Data entry: allows entry of the following data

- Customer information customer name, address, telephone e-mail.
- System data:
 - Operation timescales
 - Motor power/efficiency
 - Unit energy cost
 - Company incentive cost
 - Inverter costs
 - Duty cycle percentages

Results: data representation

- Energy Estimation Display energy cost, savings and pay back data
- Energy Graphs Graphical representation of flow vs Cost, hours and
- Report Review/print/export report, e-mail report as PDF file

Formulas: provides the following tools

- Horse power calculations for fan/blowers, pumps, rotating objects and objects in linear motion
- Torque calculations
- AC motor calculations for Synchronous speed and percentage slip
- Ohms law calculations
- Power AC calculations for current, efficiency, power factor, horse power, kW and Volt-Amperes

127 Affinity User Guide Issue Number: 3

Safety Mechanical **UL** Listing Optimization PC tools Diagnostics Information Installation Started the motor Information Installation parameters operation Information

Advanced parameters

This is a quick reference to all parameters in the drive showing units, ranges limits etc. with block diagrams to illustrate their function. Full descriptions of the parameters can be found in the Advanced User Guide on the supplied CD ROM.

These advanced parameters are listed for reference purposes only. The lists in this chapter do not include sufficient information for adjusting these parameters. Incorrect adjustment can affect the safety of the system, and damage the drive and or external equipment. Before attempting to adjust any of these parameters, refer to the Advanced User Guide.

Table 11-1 Menu descriptions

Menu number	Description
0	Commonly used basic set up parameters for quick / easy programming
1	Frequency / speed reference
2	Ramps
3	Frequency slaving, speed feedback and speed control
4	Torque and current control
5	Motor control
6	Sequencer and clock
7	Analog I/O
8	Digital I/O
9	Programmable logic, motorized pot and binary sum
10	Status and trips
11	General drive set-up
12	Threshold detectors and variable selectors
14	User PID controller
15, 16	Solutions Module slots
17	Building automation network
18	Application menu 1
19	Application menu 2
20	Application menu 3
21	Second motor parameters
22	Additional Menu 0 set-up

Operation mode abbreviations:

OL> Open loop

RFC> RFC

Default abbreviations:

EUR> European default value (50Hz AC supply frequency)

USA> USA default value (60Hz AC supply frequency)

Parameter numbers shown in brackets {...} are the equivalent Menu 0 parameters. Some Menu 0 parameters appear twice since their function depends on the operating mode.

In some cases, the function or range of a parameter is affected by the setting of another parameter; the information in the lists relates to the default condition of such parameters.

Table 11-2 Key to parameter table coding

	• •
Coding	Attribute
RW	Read/write: can be written by the user
RO	Read only: can only be read by the user
Bit	1 bit parameter. 'On' or 'OFF' on the display
Bi	Bipolar parameter
Uni	Unipolar parameter
Txt	Text: the parameter uses text strings instead of numbers.
FI	Filtered: some parameters which can have rapidly changing values are filtered when displayed on the drive keypad for easy viewing.
DE	Destination: This parameter selects the destination of an input or logic function.
RA	Rating dependent: this parameter is likely to have different values and ranges with drives of different voltage and current ratings. Parameters with this attribute will not be transferred to the destination drive by SMARTCARDs when the rating of the destination drive is different from the source drive and the file is a parameter file. However, the value will be transferred if only the current rating is different and the file is a differences from default type file.
NC	Not copied: not transferred to or from SMARTCARDs during copying.
PT	Protected: cannot be used as a destination.
US	User save: parameter saved in drive EEPROM when the user initiates a parameter save.
PS	Power-down save: parameter automatically saved in drive EEPROM when the under volts (UV) trip occurs or when the user initiates a parameter save.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

Table 11-3 Feature look-up table

Feature						Related	parame	ters (Pr)					
Acceleration rates	2.10	2.11 t	o 2.19	2.32	2.33	2.34	2.02						
Analog speed reference 1	1.36	7.10	7.01	7.07	7.08	7.09	7.25	7.26	7.30	1		<u> </u>	
Analog speed reference 2	1.37	7.14	1.41	7.02	7.11	7.12	7.13	7.28	7.31				
Analog I/O	Menu 7	7.17	11	7.02	7.11	7.12	7.10	7.20	7.01				
Analog input 1	7.01	7.07	7.08	7.09	7.10	7.25	7.26	7.30					
Analog input 2	7.01	7.11	7.12	7.03	7.10	7.28	7.31	7.50					
	7.02	7.11	7.12	7.13	7.14	7.29	7.31						
Analog input 3					7.10	7.29	1.32						
Analog output 1	7.19	7.20	7.21	7.33									
Analog output 2	7.22	7.23	7.24	10		00							
Application menu		u 18		u 19	_	u 20							
At speed indicator bit	3.06	3.07	3.09	10.06	10.05	10.07							
Auto reset	10.34	10.35	10.36	10.01									
Autotune	5.12		5.17	5.23	5.24	5.25	5.10	5.29	5.30				
Binary sum	9.29	9.30	9.31	9.32	9.33	9.34							
Bipolar speed	1.10												
Brake control	12.40 t	o 12.48											
Braking	10.11	10.10	10.30	10.31	6.01	2.04	2.02	10.12	10.39	10.40			
Building automation network	Men	u 17											
Catch a spinning motor	6.09	5.40											
Coast to stop	6.01												
Comms	11.23 t	o 11.26											
Copying	11.42		o 11.40	1		1				1			
Cost - per kWh electricity	6.24	6.25	6.26	6.27	6.28								
Current controller	4.13	4.14											
Current feedback	4.01	4.02	4.17	4.04	4.12	4.20	4.23	4.24	4.26	10.08	10.09	10.17	
Current limits	4.05	4.06	4.07	4.18	4.15	4.19	4.16	5.07	5.10	10.08	10.09	10.17	
DC bus voltage	5.05	2.08	7.07	7.10	7.10	7.10	7.10	0.01	0.10	10.00	10.00	10.17	
DC injection braking	6.06	6.07	6.01										
Deceleration rates	2.20		o 2.29	2.04	2 25 +	o 2.37	2.02	2.04	2.08	6.01	10.30	10.31	10.39
Defaults	11.43	11.46	0 2.29	2.04	2.33 (0 2.37	2.02	2.04	2.00	0.01	10.30	10.31	10.39
		11.40											
Digital I/O	Menu 8												
Digital I/O read word	8.20	0.11	0.04	0.04									
Digital I/O T24	8.01	8.11	8.21	8.31									
Digital I/O T25	8.02	8.12	8.22	8.32									
Digital I/O T26	8.03	8.13	8.23	8.33									
Digital input T27	8.04	8.14	8.24										
Digital input T28	8.05	8.15	8.25	8.39									
Digital input T29	8.06	8.16	8.26	8.39									
Digital output T22	8.08	8.18	8.28										
Direction	10.13	6.30	6.31	1.03	10.14	2.01	3.02	8.03	8.04	10.40			
Display timeout	11.41												
Drive active	10.02	10.40											İ
Drive derivative	11.28												
Drive OK	10.01	8.27	8.07	8.17	10.36	10.40							
Dynamic performance	5.26												
Dynamic V/F	5.13												<u> </u>
Enable	6.15	8.09	8.10										1
External trip	10.32	8.10	8.07										
Fan speed	6.45	30	3.01	1		1	1		1	1		<u> </u>	
Fast disable	6.29												
Filter change	6.21	6.22											
Fire mode	1.53	1.54											
Frequency reference selection	1.14	1.15										1	
		3.23											
Hard speed reference	3.22												
Heavy duty rating	5.07	11.32											
High stability space vector	5.19												
modulation		0.0-	0.0:	0.0-	0.0-	0.0	0.1-						
I/O sequencer	6.04	6.30	6.31	6.32	6.33	6.34	6.42	6.43	6.41				
Inertia compensation	2.38	5.12	4.22	3.18									
laa roforonoo	1.05	2.19	2.29		<u> </u>			1					
Jog reference													
Keypad operating mode	1.52												
		1.14	1.43	1.51	6.12	6.13							

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimiz	ation	SMARTCARD operation	PC tools	Advance paramete			iagnostics	UL Listing Information
	Feature							Relate	ed paramet	ters (Pr)					
Limit switc	hes		6.35	6.36						, ,					
Line powe	r supply los	SS	6.03	10.15	10.16	5.05									
Logic func			9.01	9.04	9.05	9.06	9.07	9.08		9.10					
Logic func			9.02	9.14	9.15	9.16	9.17	9.18	9.19	9.20					
Low load o			4.20	4.27	4.28	4.20	10.6								
Low voltage Maximum			6.44 1.06	6.46											
Menu 0 se	•			o 11.22	Men	11 22									
Minimum s	•		1.07	10.04	IVICII	u 22									
	number of		11.35												
Motor map)		5.06	5.07	5.08	5.09	5.10	5.11							
Motor map			Men	u 21	11.45										
Motor pre-			6.08	6.52											
	potentiome		9.21	9.22	9.23	9.24	9.25	9.26	9.27	9.28					
	ed reference	ce	1.04	1.38	1.09										
Onboard F	ctor digital	outoute	11.47 t	0 11.51											
	vector mo		5.14	5.17	5.23								-	-	
Operating			0.48	11.31	3.20										
Output			5.01	5.02	5.03	5.04									
	threshold		3.08												
PID contro				u 14											
Positive lo	•	_	8.29												
Power up			11.22	11.21	1.00										
Precision r			1.18	1.19	1.20	1.44	4.44	4.40	4.45.4	- 1 10	4.50				
Preset spe Programm			1.15 Menu 9	1.21	to 1.28	1.16	1.14	1.42	1.45 to	0 1.48	1.50				
	are operati	on	5.20												
	cel / decel)		2.04	2.08	6.01	2.02	2.03	10.30	10.31	10.39					
Real time			6.16	6.17	6.18	6.19	6.20								
Regenerat	ing		10.10	10.11	10.30	10.31	6.01	2.04	2.02	10.12	10.39	10.40			
Relay outp	out		8.07	8.17	8.27										
Reset			10.33	8.02	8.22	10.34	10.35	10.30	3 10.01						
RFC mode)		3.24	3.42	4.12	5.40									
S ramp	1		2.06	2.07											
Sample rate Security co			5.18 11.30	11.44											
Security Com				0 11.26											
Skip speed			1.29	1.30	1.31	1.32	1.33	1.34	1.35						
Sleep mod			6.53	6.54											
Slip compe			5.27	5.08											
SMARTCA				o 11.40	11.42										
Software v			11.29	11.34											
Speed con				0 3.17	3.19	3.20	3.21								
Speed fee		etion	3.02 1.14	3.03 1.15	3.04 1.49	1.50	1.01								
Status wor	erence sele	CUUI	1.14	1.15	1.49	1.50	1.01								
Supply	<u>~</u>		6.44	5.05	6.46	+									
Switching	frequency		5.18	5.35	7.34	7.35									
Thermal p	rotection -		5.18	5.35	7.04	7.05	7.06	7.32	7.35	10.18					
	rotection - i	motor	4.15	5.07	4.19	4.16	4.25	7.15							
Thermistor			7.15	7.03											
	Threshold detector 1		12.01		to 12.07										
Threshold detector 2 Time - filter change		12.02		to 12.27											
	r cnange vered up lo	a	6.21 6.16	6.22 6.17	6.19	6.20									
Time - pov		9	6.16	6.17	6.19	6.20							-	-	
Timer func				0.17	3.10	5.25									
Torque		4.03	4.26	5.32	+										
Torque mode		4.08	4.11	4.09	4.10										
Trip detect	Trip detection		10.37	10.38	10.20 to	l l									
Trip log				o 10.29	10.41 to	10.60	6.28	6.49							
Under volt	age		5.05	10.16	10.15										
V/F mode	-lt		5.15	5.14											
Variable se	elector 1		12.08 t	o 12.15											

Information	Information	Installation	Installation		parameters	the motor		operation	PC tools	parameters	Data	Diagnostics	Information
	Feature						Rel	ated paramet	ers (Pr)				
Variable se	elector 2		12.28 t	o 12.35									
Voltage co	ntroller		5.31										
Voltage mo	ode		5.14	5.17	5.23	5.15							
Voltage rat	ting		11.33	5.09	5.05								
Voltage su	ipply		6.44	6.46	5.05								
Warning			10.19	10.12	10.17	10.18	10.40						
Zero speed	d indicator	bit	3.05	10.03									

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

Parameter ranges and variable maximums:

The two values provided define the minimum and maximum values for the given parameter. In some cases the parameter range is variable and dependant on either:

- other parameters
- the drive rating
- drive mode
- or a combination of these

The values given in Table 11-4 are the variable maximums used in the drive.

Table 11-4 Definition of parameter ranges & variable maximums

Maximum	Definition
SPEED_FREQ_MAX [Open-loop 3000.0Hz, RFC 40000.0rpm]	Maximum speed (RFC mode) reference or frequency (open-loop mode) reference If Pr 1.08 = 0: SPEED_FREQ_MAX = Pr 1.06 If Pr 1.08 = 1: SPEED_FREQ_MAX is Pr 1.06 or – Pr 1.07 whichever is the largest (If the second motor map is selected Pr 21.01 is used instead of Pr 1.06 and Pr 21.02 instead of Pr 1.07)
SPEED_LIMIT_MAX [40000.0rpm]	Maximum applied to speed reference limits In RFC mode SPEED_LIMIT_MAX = 40,000rpm.
SPEED_MAX [40000.0rpm]	Maximum speed This maximum is used for some speed related parameters in menu 3. To allow headroom for overshoot etc. the maximum speed is twice the maximum speed reference. SPEED_MAX = 2 x SPEED_FREQ_MAX
RATED_CURRENT_MAX [9999.99A]	Maximum motor rated current RATED_CURRENT_MAX = $1.36 \times K_C$. The motor rated current can be increased above K_C up to a level not exceeding $1.36 \times K_C$). (Maximum motor rated current is the maximum normal duty current rating.) The actual level varies from one drive size to another, refer to Table 11-5.
DRIVE_CURRENT_MAX [9999.99A]	Maximum drive current The maximum drive current is the current at the over current trip level and is given by: DRIVE_CURRENT_MAX = K _C / 0.45
AC_VOLTAGE_SET_MAX [690V]	Maximum output voltage set-point Defines the maximum motor voltage that can be selected. 200V drives: 240V, 400V drives: 480V 575V drives: 575V, 690V drives: 690V
AC_VOLTAGE_MAX [930V]	Maximum AC output voltage This maximum has been chosen to allow for maximum AC voltage that can be produced by the drive including quasi-square wave operation as follows: AC_VOLTAGE_MAX = 0.78 x DC_VOLTAGE_MAX 200V drives: 325V, 400V drives: 650V, 575V drives: 780V, 690V drives: 930V
DC_VOLTAGE_SET_MAX [1150V]	Maximum DC voltage set-point 200V rating drive: 0 to 400V, 400V rating drive: 0 to 800V 575V rating drive: 0 to 955V, 690V rating drive: 0 to 1150V
DC_VOLTAGE_MAX [1190V]	Maximum DC bus voltage The maximum measurable DC bus voltage. 200V drives: 415V, 400V drives: 830V, 575V drives: 990V, 690V drives: 1190V

Safety Product Information		Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
MOTOR1_CURRE	num	Maxi This Oper Ma cui Whee The I the n Moto PF is RFC Ma cui Whee The I or eq Moto $\phi_1 =$ Guid	mum commaximum re: Maximum rated of simotor rated of simotor rated of cos-1(Pe for modern mod	urrent limit im current is a Heavy Ducurrent is grated power it is e maximum current is grated power if $= \sqrt{\frac{1}{2}}$	it settings limit setting limi	mum current rated current PF 1 x drive ratin rating given r 5.07 ven by Pr 5. mum current rated current cos(φ ₁) x drive ratin uty current rate r 5.07 sured by the	g or 1.5 x K _C by Pr 11.32. 10 g or 1.75 x K _C till 2 + cos(φ	If to the c $\begin{bmatrix} -1 \\ x \end{bmatrix}_{x = 1}$ if the mo	urrent limit 00% tor rated cu x 100% otor rated cu	paramete	in Pr 5.07 is	map 1. more than
MOTOR2_CURRE [1000.0%]	NT_LIMIT_M	AX This The f	maximu formulae	m current e for MOTO	limit settin DR2_CUR	RENT_LIMI	map 2 imum applied T_MAX are thand Pr 5.10 is	ne same	for MOTOF	R1_CURF		
TORQUE_PROD_0 [1000.0%]	CURRENT_N	MAX This	is used		num for to	orque and to	que producin R2_CURREN	•	•		n which mot	tor map is

The values given in square brackets indicate the absolute maximum value allowed for the variable maximum.

USER_CURRENT_MAX = Pr 4.24

Maximum power in kW

Current parameter limit selected by the user

The user can select a maximum for Pr 4.08 (torque reference) and Pr 4.20 (percentage load) to give suitable

scaling for analog I/O with Pr 4.24. This maximum is subject to a limit of MOTOR1 CURRENT LIMIT MAX. or

The maximum power has been chosen to allow for the maximum power that can be output by the drive with

MOTOR2_CURRENT_LIMIT_MAX depending on which motor map is currently active.

POWER_MAX = √3 x AC_VOLTAGE_MAX x DRIVE_CURRENT_MAX

maximum AC output voltage, maximum controlled current and unity power factor. Therefore:

currently active.

USER_CURRENT_MAX

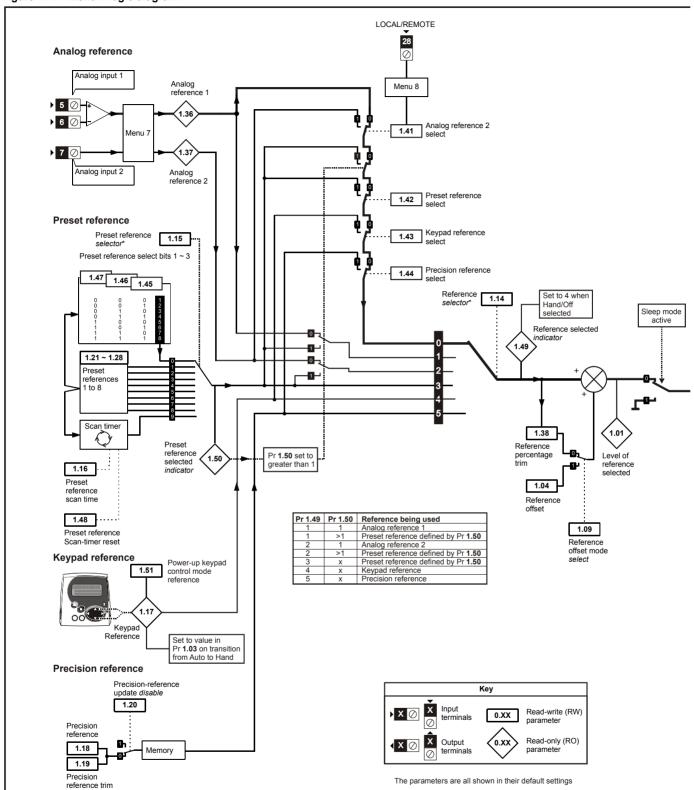
[1000.0%]

POWER MAX

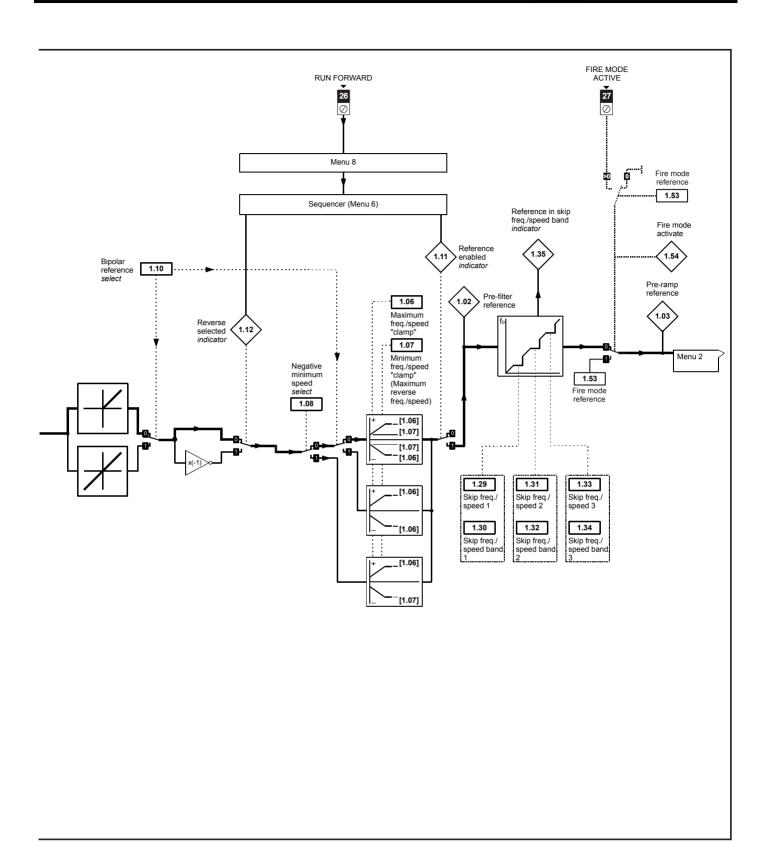
[9999.99kW]

Safety Product Information Installation Inst

Table 11-5 Maximum motor rated current


ī		
Model	K _C	Maximum Normal Duty current rating A
BA1201	4.3	5.2
BA1202	5.8	6.8
BA1203	7.5	9.6
BA1204	10.6	11
BA2201	12.6	15.5
BA2202	17.0	22.0
BA2203	25.0	28.0
BA3201	31.0	42.0
BA3202	42.0	54.0
BA4201	56.0	68.0
BA4202	68.0	80.0
BA4203	80.0	104.0
BA5201	105.0	130.0
BA5201	130.0	154.0
BA3202 BA1401	2.1	2.8
BA1402	3.0	3.8
BA1402	4.2	5.0
BA1403 BA1404	5.8	6.9
BA1404 BA1405	7.6	8.8
BA1405 BA1406	9.5	11.0
BA1406 BA2401	13.0	15.3
BA2402	16.5	21.0
BA2403	23.0	29.0
BA3401	32.0	35.0
BA3402	40.0	43.0
BA3403	46.0	56.0
BA4401	60.0	68.0
BA4402	74.0	83.0
BA4403	96.0	104.0
BA5401	124.0	138.0
BA5402	156.0	168.0
BA6401	154.2	202.0
BA6402	180.0	236.0
BA3501	4.1	5.4
BA3502	5.4	6.1
BA3503	6.1	8.4
BA3504	9.5	11.0
BA3505	12.0	16.0
BA3506	18.0	22.0
BA3507	22.0	27.0
BA4601	19.0	22.0
BA4602	22.0	27.0
BA4603	27.0	36.0
BA4604	36.0	43.0
BA4605	43.0	52.0
BA4606	52.0	62.0
BA5601	63.0	84.0
BA5602	85.0	99.0
BA6601	85.7	125.0
BA6602	107.1	144.0

Safety Product Information Information Installation Installation Installation Installation Information Information Information Installation Installation Installation Installation Information Informa


Safety Product Mechanical Electrical SMARTCARD Advanced **UL** Listing PC tools Optimization Diagnostics Information Started the motor Information Installation Installation parameters operation parameters Data Information

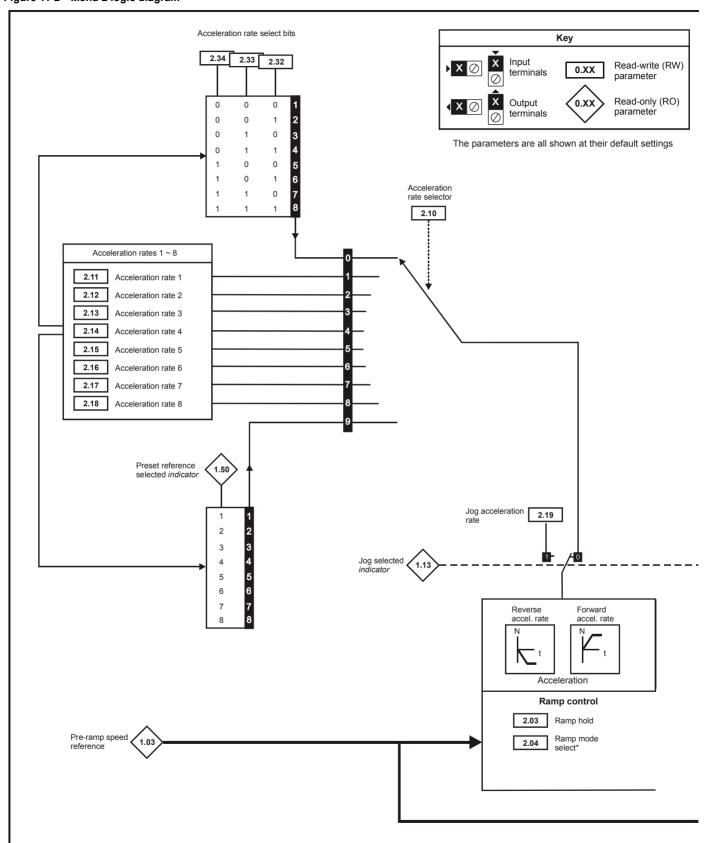
11.1 Menu 1: Frequency / speed reference

Figure 11-1 Menu 1 logic diagram

^{*}For more information, refer to section 11.21.1 Reference modes on page 202

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation	iniormation	installation	installation	Started	parameters	the motor		operation		parameters	Data	· ·	mormation

	Parameter	Ran	ge(û)	Defa	ault(⇨)	Туре					
		OL	RFC	OL	RFC			ıyp	Je		
1.01	Frequency / speed reference selected	±SPEED_FRE	EQ_MAX Hz/rpm			RO	Bi		NC	PT	
1.02	Pre-skip filter reference	±SPEED_FRE	EQ_MAX Hz/rpm			RO	Bi		NC	PT	
1.03	Pre-ramp reference	±SPEED_FRE	EQ_MAX Hz/rpm			RO	Bi		NC	PT	
1.04	Reference offset	±3,000.0Hz	±40,000.0 rpm		0.0	RW	Bi				US
1.05	Jog reference	0 to 400.0 Hz	0 to 4,000.0 rpm		0.0	RW	Uni				US
1.06	Maximum reference clamp {0.02}	0 to 3,000.0 Hz	SPEED_LIMIT_MAX rpm	EUR> 50.0 USA> 60.0	EUR> 1,500.0 USA> 1,800.0	RW	Uni				US
1.07	Minimum reference clamp {0.01}	±3,000.0 Hz	±SPEED_LIMIT_MAX rpm		0.0	RW	Bi			PT	US
1.08	Negative minimum reference clamp enable	` `	or On (1)		FF (0)	RW	Bit				US
1.09	Reference offset select	, ,	or On (1)		FF (0)	RW	Bit				US
1.10	Bipolar reference enable	OFF (0)	or On (1)	OI	FF (0)	RW	Bit				US
1.11	Reference enabled indicator	` `	or On (1)			RO RO	Bit		NC	PT	
1.12	Reverse selected indicator		or On (1)				Bit Bit		NC	PT	
1.13	Jog selected indicator	,	or On (1)		A1.A2 (0)				NC	PT	
1.14	Reference selector {0.05}		r (2), Pr (3), PAd (4), Prc (5)	A1	. ,	RW	Txt				US
1.15	Preset reference selector	0	to 9		0	RW	Uni				US
1.16	Preset reference selector timer	0 to	400.0s		10.0	RW	Uni				US
1.17	Keypad control mode reference		EQ_MAX Hz/rpm		0.0	RO	Bi		NC	PT	PS
1.18	Precision reference coarse		EQ_MAX Hz/rpm		0.0	RW	Bi				US
1.19	Precision reference fine Precision reference update	0.000 to 0.099 Hz	0.000 to 0.099 rpm		0.000	RW	Uni				US
1.20	disable	` '	or On (1)		FF (0)	RW	Bit		NC		LIC
1.21	Preset reference 1		EQ_MAX Hz/rpm EQ_MAX Hz/rpm		0.0	RW	Bi Bi				US
1.22	Preset reference 2 Preset reference 3	±SPEED_FRE		0.0	RW	Bi				US	
1.23	Preset reference 4		EQ_IMAX HZ/IpIII		0.0	RW	Bi				US
1.25	Preset reference 5		EQ_MAX Hz/rpm		0.0	RW	Bi				US
1.26	Preset reference 6	_			0.0	RW	Bi				US
1.27	Preset reference 7	±SPEED_FREQ_MAX Hz/rpm 0.0 ±SPEED FREQ_MAX Hz/rpm 0.0				RW	Bi				US
1.28	Preset reference 8		EQ MAX Hz/rpm		0.0	RW	Bi				US
1.29	Skip reference 1	0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0	0	RW	Uni				US
1.30	Skip reference band 1	0.0 to 25.0 Hz	0 to 250 rpm	0.5	5	RW	Uni				US
1.31	Skip reference 2	0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0	0	RW	Uni				US
1.32	Skip reference band 2	0.0 to 25.0 Hz	0 to 250 rpm	0.5	5	RW	Uni				US
1.33	Skip reference 3	0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0	0	RW	Uni				US
1.34	Skip reference band 3	0.0 to 25.0Hz	0 to 250 rpm	0.5	5	RW	Uni				US
1.35	Reference in rejection zone		or On (1)			RO	Bit		NC	PT	Ш
	Analog reference 1		EQ_MAX Hz/rpm			RO	Bi		NC		Ш
1.37	Analog reference 2		EQ_MAX Hz/rpm		0.00	RO	Bi		NC		$\sqcup \hspace{-0.1cm} \mid$
1.38	Percentage trim Analog reference 2 select		0.00% or On (1)		0.00 FF (0)	RW	Bi Bit		NC NC		$\vdash \vdash \vdash$
1.41	Preset reference select	,	or On (1)		FF (0) FF (0)	RW	Bit		NC		$\vdash \vdash$
1.42	Keypad reference select	, ,	or On (1)		FF (0)	RW	Bit		NC		$\vdash \vdash \vdash$
1.44	Precision reference select	,	or On (1)		FF (0)	RW	Bit		NC		$\vdash \vdash$
1.45	Preset reference 1 select	, ,	or On (1)		FF (0)	RW	Bit		NC		\vdash
1.46	Preset reference 2 select	, ,	or On (1)		FF (0)	RW	Bit		NC		\vdash
1.47	Preset reference 3 select	,	or On (1)		FF (0)	RW	Bit		NC		\square
1.48	Reference timer reset flag	OFF (0)	or On (1)	Ol	FF (0)	RW	Bit		NC		
1.49	Reference selected indicator	1	to 5	3.1 (0)			Uni		NC	PT	
1.50	Preset reference selected indicator	1	to 8				Uni		NC	PT	
1.51	Power-up keyboard control mode reference	rESEt (0), LA	St (1), PrS1 (2)	rESEt (0)			Txt				US
1.52	Enable hand/off/auto keypad operation mode	0	to 3	2			Uni				US
1.53	Fire mode reference	±SPEED_FRE	EQ_MAX Hz/rpm		0.0	RW	Bi				US
1.54	Fire mode activate	OFF (0)	or On (1)	Ol	FF (0)	RO	Bit		NC		


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor SMARTCARD operation Advanced parameters Technical Data UL Listing Information PC tools Optimization Diagnostics

Getting Started Safety Product Mechanical Electrical Advanced **UL** Listing PC tools Optimization Diagnostics Information Installation Information the motor Data Information Installation parameters operation

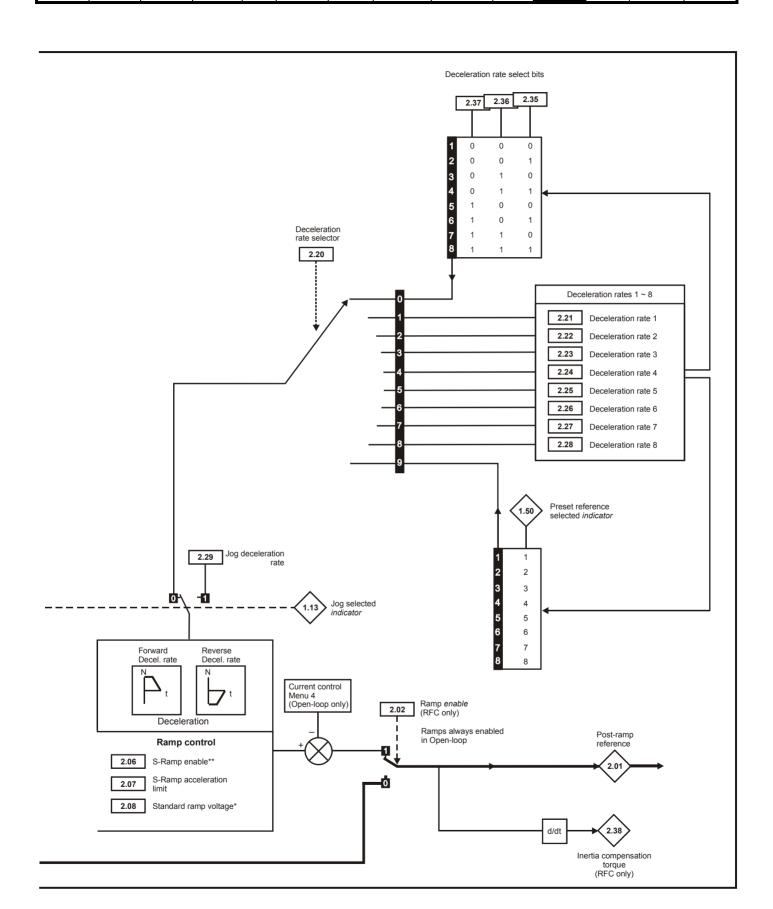

11.2 Menu 2: Ramps

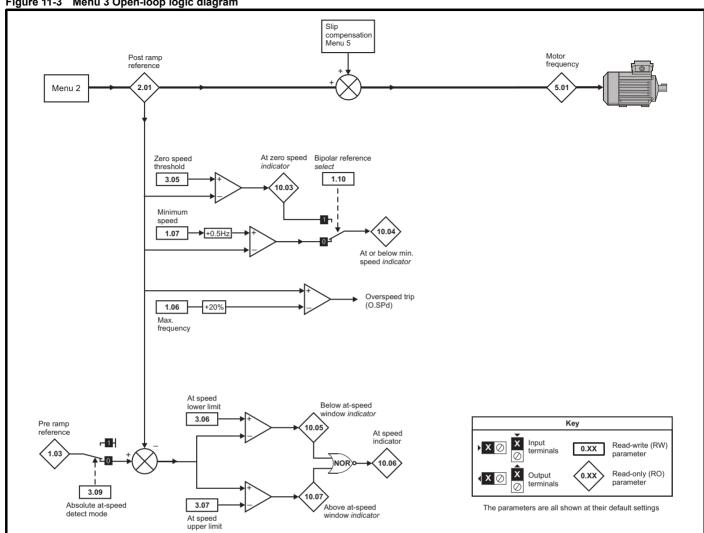
Figure 11-2 Menu 2 logic diagram

^{*}For more information, refer to section 11.21.5 Braking Modes on page 206.

^{**}For more information, refer to section 11.21.6 S ramps on page 207.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation		parameters	Data	Diagnostics	Information

Column Post ramp reference ±SPEED_FREQ_MAX Hz/rpm Column RFC Column	уре		Type				
2.02 Ramp enable	Туре						
2.03 Ramp hold	NC	PT					
2.04 Ramp mode select (0.14) FASt (0) Std (1)		US					
2.04 Ramp mode select (0.14) Std (1)			US				
2.07 S ramp acceleration limit 0.0 to 300.0 s²/100Hz 0.000 to 100.000 s²/100Hz 0.000 to 100.000 s²/100Hz 0.000 to 100.000 s²/100Hz 0.000 to 100.000 s²/100Hz 0.000 to 10.000 to 10.0			US				
2.07 Sramp acceleration limit s²/100Hz s²/1000rpm 3.1 1.500 RW Unit			US				
2.08 Standard ramp voltage 0 to DC_VOLTAGE_SET_MAX V			US				
2.11 Acceleration rate 1 {0.03} 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 USA> 11.111 RW Uni 2.12 Acceleration rate 2 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 USA> 11.111 RW Uni 2.13 Acceleration rate 3 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 USA> 33.3 USA> 11.111 RW Uni 2.14 Acceleration rate 4 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 USA> 33.3 USA> 11.111 RW Uni 2.15 Acceleration rate 5 0.0 to 3,200.0 s/1,000rpm 0.000 to 3,200.000 USA> 33.3 USA> 11.111 RW Uni 2.16 Acceleration rate 6 0.0 to 3,200.0 s/1,000rpm 0.000 to 3,200.000 USA> 33.3 USA> 11.111 RW Uni 2.17 Acceleration rate 7 0.0 to 3,200.0 s/1,000rpm 0.000 to 3,200.000 USA> 33.3 USA> 11.111 RW Uni 2.18 Acceleration rate 8 0.0 to 3,200.0 s/1,000rpm 0.000 to 3,200.000 USA> 33.3 USA> 11.111 RW Uni	RA		US				
2.11 Acceleration rate 1 {0.03} s/100Hz s/1,000rpm USA> 33.3 USA> 11.111 RW Uni			US				
2.12 Acceleration rate 2 S/100Hz S/1,000rpm USA> 33.3 USA> 11.111 RW Uni			US				
2.13 Acceleration rate 3 S/100Hz S/1,000rpm USA> 33.3 USA> 11.111 RW Uni			US				
2.14 Acceleration rate 4 s/100Hz s/1,000rpm USA> 33.3 USA> 11.111 RW Uni 2.15 Acceleration rate 5 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 EUR> 13.333 USA> 11.111 RW Uni 2.16 Acceleration rate 6 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 EUR> 13.333 USA> 11.111 RW Uni 2.17 Acceleration rate 7 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 EUR> 13.333 USA> 11.111 RW Uni 2.18 Acceleration rate 8 0.0 to 3,200.0 s/1,000rpm 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 EUR> 13.333 USA> 11.111 RW Uni			US				
2.15 Acceleration rate 5 s/100Hz s/1,000rpm USA> 33.3 USA> 11.111 RW Uni 2.16 Acceleration rate 6 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 USA> 11.111 RW Uni 2.17 Acceleration rate 7 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 EUR> 13.333 USA> 11.111 RW Uni 2.18 Acceleration rate 8 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 EUR> 13.333 USA> 11.111 RW Uni			US				
2.16 Acceleration rate 6 s/100Hz s/1,000rpm USA> 33.3 USA> 11.111 RW Uni 2.17 Acceleration rate 7 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 EUR> 13.333 USA> 11.111 RW Uni 2.18 Acceleration rate 8 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 EUR> 13.333 USA> 11.111 RW Uni			US				
2.17 Acceleration rate 7 s/100Hz s/1,000rpm USA> 33.3 USA> 11.111 RW Uni 2.18 Acceleration rate 8 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 EUR> 13.333 USA> 11.111 RW Uni			US				
2.18 Acceleration rate 8 s/1,00Hz s/1,000rpm USA> 33.3 USA> 11.111 RVV Uni			US				
0.0 to 3.200.0 0.000 to 3.200.000 0.000 to 3.200.000			US				
2.19 Jog acceleration rate s/1,000rpm 0.2 0.000 RW Uni			US				
2.20 Deceleration rate selector 0 to 9 0 RW Uni			US				
2.21 Deceleration rate 1 {0.04} 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 EUR> 13.333 USA> 11.111 RW Uni			US				
2.22 Deceleration rate 2 0.0 to 3,200.0 0.000 to 3,200.000 EUR> 40.0 EUR> 13.333 USA> 11.111 RW Uni			US				
2.23 Deceleration rate 3 0.0 to 3,200.0 0.000 to 3,200.000 EUR> 40.0 EUR> 13.333 USA> 11.111 RW Uni			US				
2.24 Deceleration rate 4 0.0 to 3,200.0 0.000 to 3,200.000 EUR> 40.0 EUR> 13.333 RW Uni			US				
2.25 Deceleration rate 5 0.0 to 3,200.0 0.000 to 3,200.000 EUR> 40.0 EUR> 13.333 USA> 11.111 RW Uni			US				
2.26 Deceleration rate 6 0.0 to 3,200.0 s/1,000 g/l 0.000 to 3,200.000 s/1,000 g/l EUR> 40.0 USA> 33.3 USA> 11.111 RW Uni			US				
2.27 Deceleration rate 7 0.0 to 3,200.0 0.000 to 3,200.000 EUR> 40.0 EUR> 13.333 USA> 11.111 RW Uni			US				
2.28 Deceleration rate 8 0.0 to 3,200.0 s/1,000Hz 0.000 to 3,200.000 s/1,000rpm EUR> 40.0 USA> 33.3 USA> 11.111 RW Uni			US				
2.29 Jog deceleration rate 0.0 to 3,200.0 s/100Hz 0.000 to 3,200.000 s/1,000rpm 0.2 0.000 RW Uni			US				
2.32 Acceleration select bit 0 OFF (0) or On (1) OFF (0) RW Bit	NC		<u> </u>				
2.33 Acceleration select bit 1 OFF (0) or On (1) OFF (0) RW Bit	NC	$\downarrow \downarrow \downarrow$	<u> </u>				
2.34 Acceleration select bit 2 OFF (0) or On (1) OFF (0) RW Bit	NC	\vdash	_				
2.35 Deceleration select bit 0 OFF (0) or On (1) OFF (0) RW Bit 2.36 Deceleration select bit 1 OFF (0) or On (1) OFF (0) RW Bit	NC NC	\vdash	<u> </u>				
2.36 Deceleration select bit 1 OFF (0) of Off (1) OFF (0) RW Bit 2.37 Deceleration select bit 2 OFF (0) or On (1) OFF (0) RW Bit	NC	\vdash					
2.37 Deceleration Select bit 2 CFT (0) of Off (1) CFT (0) RV Bit 2.38 Inertia compensation torque ± 1,000.0 % RO Bi		PT	\vdash				


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

142 Affinity User Guide Issue Number: 3

Advanced parameters Safety Product Electrical Getting SMARTCARD **UL** Listing Optimization PC tools Diagnostics Information Information Installation Started parameters the motor Data Information Installation operation

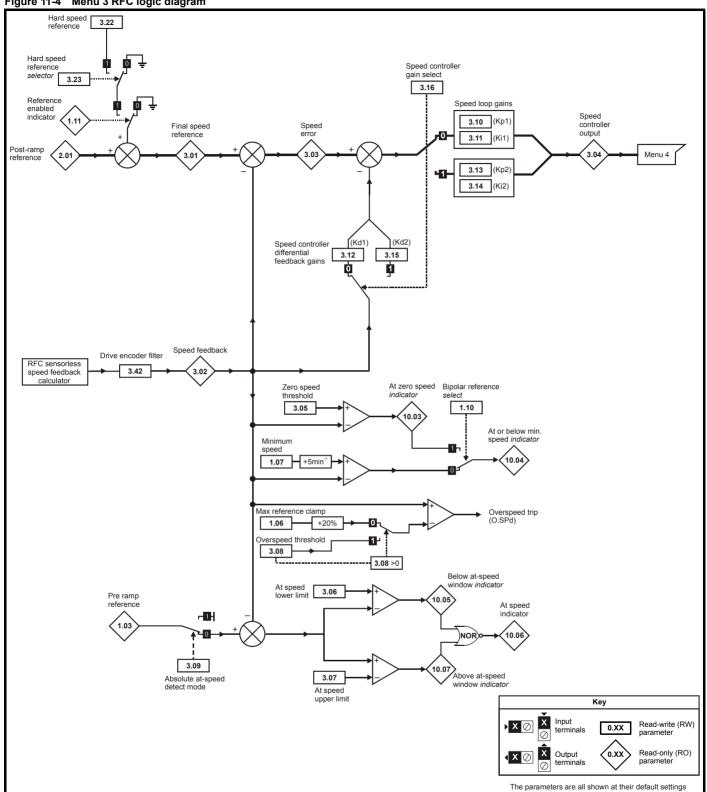
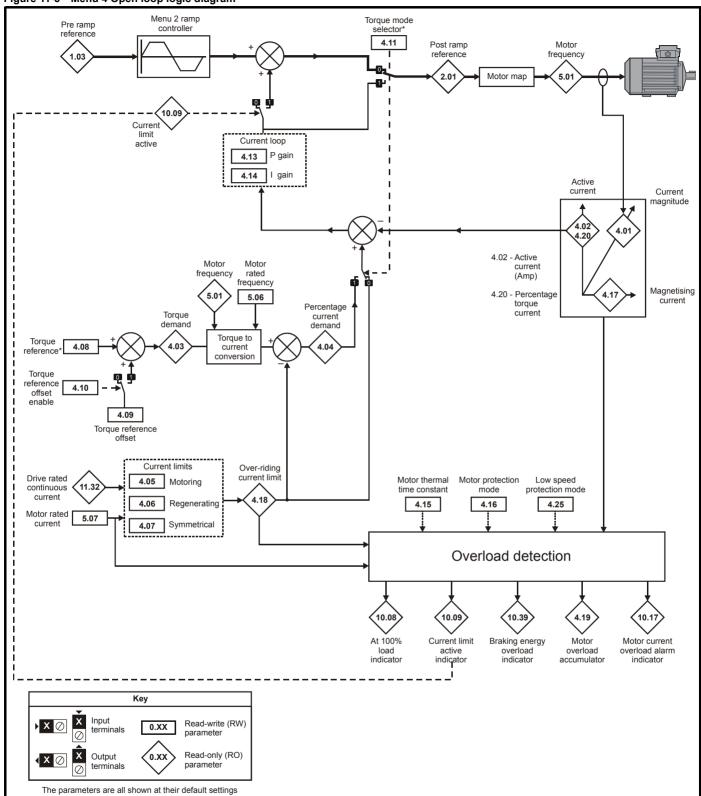

11.3 Menu 3: Speed feedback and speed control

Figure 11-3 Menu 3 Open-loop logic diagram

Getting Started Product Mechanical Electrical Basic Running SMARTCARD Advanced **UL** Listing Optimization PC tools Diagnostics Information the motor Data Information Information Installation Installation parameters operation parameters

Figure 11-4 Menu 3 RFC logic diagram

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools Advan	ed Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	parame	ters Data	Diagnostics	Information


If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr **3.39** to 0.If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0

	Parameter	Ra	nge(‡)	Defau	ılt(⇔)			Ту	no		
	raiailletei	OL	RFC	OL	RFC			ıy	he		
3.01	Final speed reference		±SPEED_MAX rpm			RO	Bi	FI	NC	PT	
3.02	Speed feedback {0.10)}	±SPEED_MAX rpm			RO	Bi	FI	NC	PT	
3.03	Speed error		±SPEED_MAX rpm			RO	Bi	FI	NC	PT	
3.04	Speed controller output		±Torque_prod_ current_max %			RO	Bi	FI	NC	PT	
3.05	Zero speed threshold	0.0 to 20.0 Hz	0 to 200 rpm	1.0	5	RW	Uni				US
3.06	At speed lower limit	0.0 to 3,000.0 Hz	0 to 40,000 rpm	1.0	50	RW	Uni				US
3.07	At speed upper limit	0.0 to 3,000.0 Hz	0 to 40,000 rpm	1.0	50	RW	Uni				US
3.08	Overspeed threshold		0 to 40,000 rpm		0	RW	Uni				US
3.09	Absolute 'at speed' detect	OFF (0	0) or On (1)	OFF	(0)	RW	Bit				US
3.10	Speed controller proportional gain (Kp1) {0.07	r}	0.0000 to 6.5535 1/rad s ⁻¹		0.0300	RW	Uni				US
3.11	Speed controller integral gain (Ki1) {0.08	3}	0.00 to 655.35 s/rad s ⁻¹		0.10	RW	Uni				US
3.12	Speed controller differential feedback gain (Kd1) {0.09	9}	0.00000 to 0.65535 s ⁻¹ /rad s ⁻¹		0.00000	RW	Uni				US
3.13	Speed controller proportional gain (Kp2)		0.0000 to 6.5535 1/rad s ⁻¹		0.0300	RW	Uni				US
3.14	Speed controller integral gain (Ki2)		0.00 to 655.35 1/rad		0.10	RW	Uni				US
3.15	Speed controller differential feedback gain (Kd2)		0.00000 to 0.65535 s		0.00000	RW	Uni				US
3.16	Speed controller gain select		OFF (0) or On (1)		OFF (0)	RW	Bit				US
3.17	Speed controller set-up method		0 to 3		0	RW	Uni				US
3.18	Motor and load inertia		0.00010 to 90.00000 kg m ²		0.00000	RW	Uni				US
3.19	Compliance angle		0.0 to 359.9 °		4.0	RW	Uni				US
3.20	Bandwidth		0 to 255 Hz		10	RW	Uni				US
3.21	Damping factor		0.0 to 10.0		1.0	RW	Uni				US
3.22	Hard speed reference		±SPEED_FREQ_ MAX rpm		0.0	RW	Bi				US
3.23	Hard speed reference selector		OFF (0) or On (1)		OFF (0)	RW	Bit				US
3.24	RFC mode		3		3	RW	Uni				US
3.42	Drive encoder filter		0 (0), 1 (1), 2 (2), 4 (3), 8 (4), 16 (5) ms		0	RW	Txt				US


Getting Started Safety Product Mechanical Electrical **UL** Listing PC tools Optimization Diagnostics Information Information Installation Installation parameters the motor operation Data Information

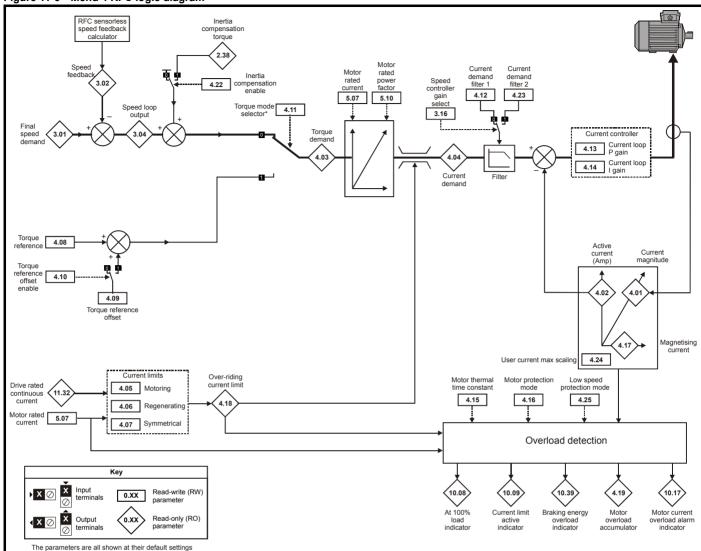

11.4 Menu 4: Torque and current control

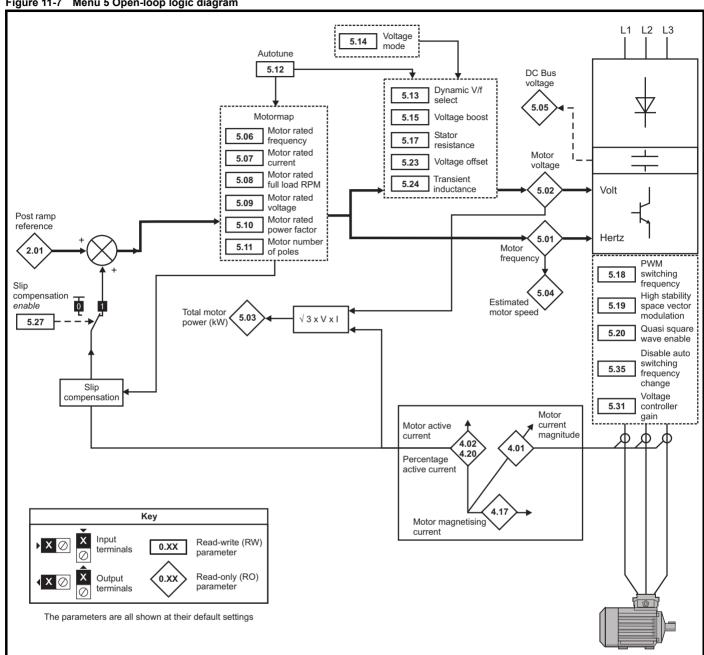
Figure 11-5 Menu 4 Open loop logic diagram

For more information, refer to section 11.21.7 Torque modes on page 207.

^{*}For more information, refer to section 11.21.7 Torque modes on page 207.

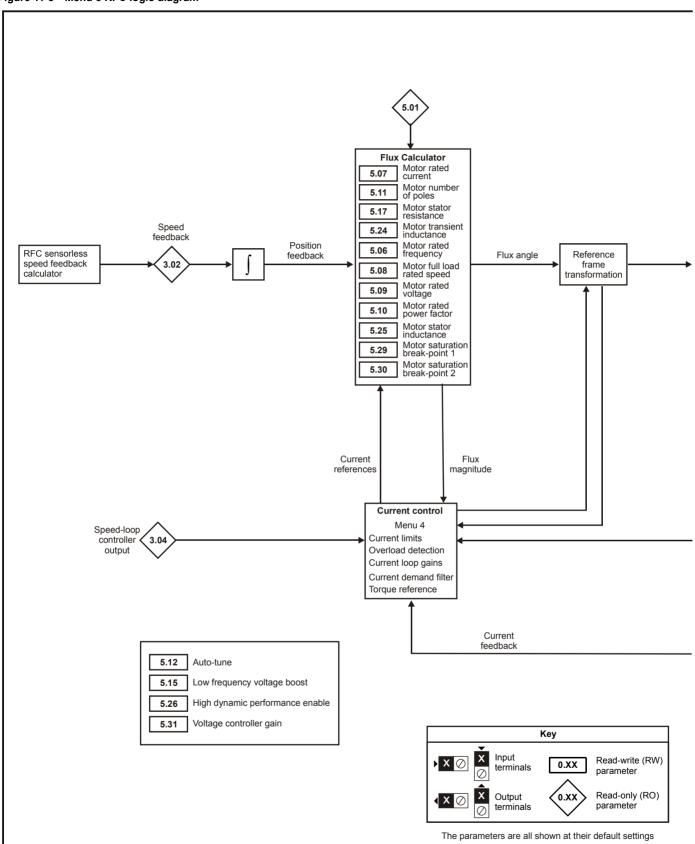
Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

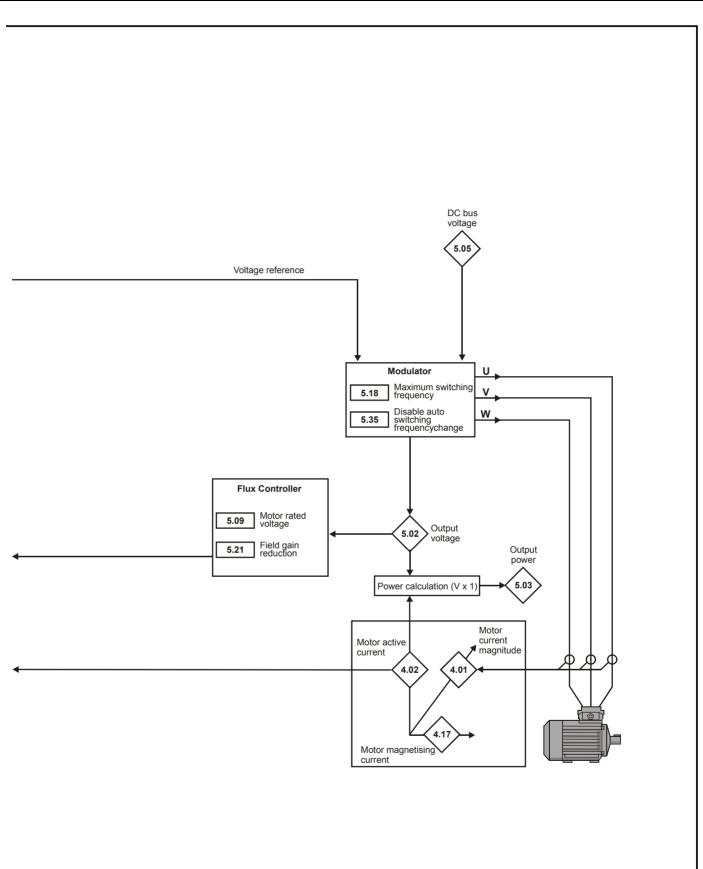
	Parameter		Ran	ge(\$)	Defa	ault(⇔)			Ту	ne		
	ranameter		OL	RFC	OL	RFC			. ,	pe		
4.01	Total motor current	{0.12}	0 to DRIVE_CU	JRRENT_MAX A			RO	Uni	FI	NC	PT	
4.02	Active current		±DRIVE_CUF	RRENT_MAX A			RO	Bi	FI	NC	PT	
4.03	Torque demand		±TORQUE_PROD	_CURRENT_MAX %			RO	Bi	FI	NC	PT	
4.04	Current demand		±TORQUE_PROD	_CURRENT_MAX %			RO	Bi	FI	NC	PT	
4.05	Motoring current limit		0 to MOTOR1_CUR	RENT_LIMIT_MAX %		110	RW	Uni		RA		US
4.06	Regen current limit		0 to MOTOR1_CUR	RENT_LIMIT_MAX %		110	RW	Uni		RA		US
4.07	Symmetrical current limit	{0.06}	0 to MOTOR1_CUR	RENT_LIMIT_MAX %		110	RW	Uni		RA		US
4.08	Torque reference		±USER_CUR	RENT_MAX %	(0.00	RW	Bi				US
4.09	Torque offset		±USER_CUR	RENT_MAX %		0.0	RW	Bi				US
4.10	Torque offset select		OFF (0)	or On (1)	OI	FF (0)	RW	Bit				US
4.11	Torque mode selector		0	to 1		0	RW	Uni				US
4.12	Current demand filter 1	{0.17}		0.0 to 25.0 ms		0.0	RW	Uni				US
4.13	Current controller Kp gain		0 to :	30,000	20	200V drive: 75 400V drive: 150 575V drive: 180 690V drive: 215	RW	Uni				US
4.14	Current controller Ki gain		0 to :	30,000	40	200V drive: 1000 400V drive: 2000 575V drive: 2400 690V drive: 3000	RW	Uni				US
4.15	Thermal time constant		0.0 to	3000.0	89.0	89.0	RW	Uni				US
4.16	Thermal protection mode		0	to 1		Ö	RW	Bit				US
4.17	Reactive current		±DRIVE_CUF	RRENT_MAX A			RO	Bi	FI	NC	PT	
4.18	Overriding current limit		±TORQUE_PROD	_CURRENT_MAX %			RO	Uni		NC	PT	
4.19	Overload accumulator		0 to 1	00.0 %			RO	Uni		NC	PT	
4.20	Percentage load	{0.13}	±USER_CUR	RENT_MAX %			RO	Bi	FI	NC	PT	
4.22	Inertia compensation enable			OFF (0) or On (1)		OFF (0)	RW	Bit				US
4.23	Current demand filter 2			0.0 to 25.0 ms		0.0	RW	Uni				US
4.24	User current maximum scaling			OD_CURRENT_MAX %		110	RW	Uni		RA		US
4.25	Low speed thermal protection mode		OFF (0) or On (1)		С	n (1)	RW	Bit				US
4.26	Percentage torque		±USER_CURRENT _MAX %				RO	Bi	FI	NC	PT	
4.27	Low load detection level	{0.26}	0.0 to	100.0 %		0.0	RW					US
4.28	Low level detection speed / frequency threshold	{0.27}		REQ_MAX Hz/rpm		0.0	RW					US
4.29	Trip in abnormal load detection	{0.28}	OFF (0)	or On (1)	OI	FF (0)	RW	Bit				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

148 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information


11.5 Menu 5: Motor control


Figure 11-7 Menu 5 Open-loop logic diagram

Getting Started Safety Product Electrical Basic Running SMARTCARD Advanced **UL** Listing PC tools Optimization Diagnostics Installation Information Information the motor Data Information Installation parameters operation parameters

Figure 11-8 Menu 5 RFC logic diagram

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

RFC

Default(⇔)

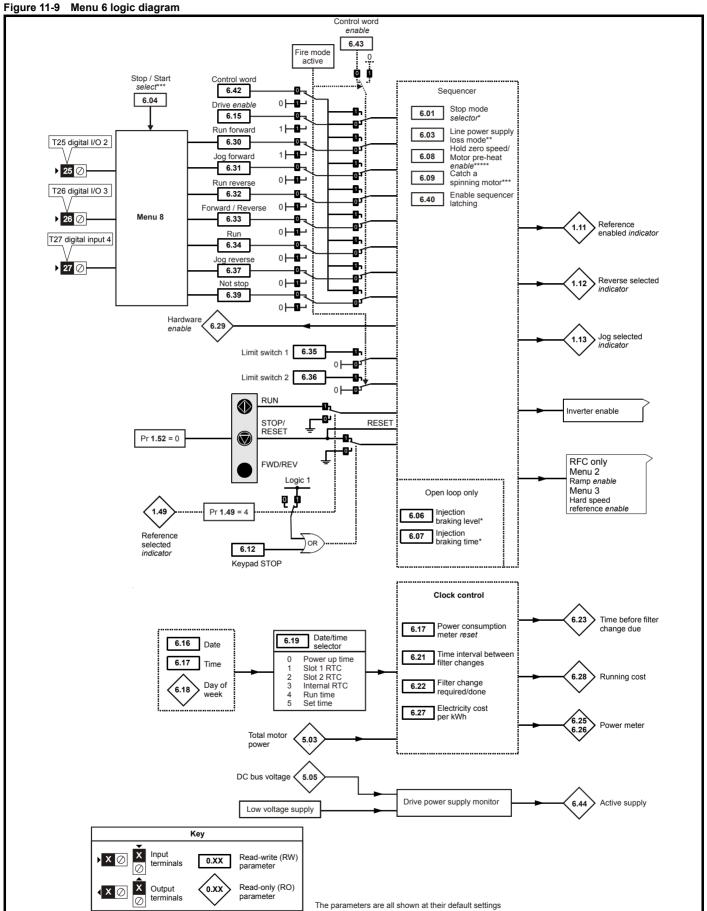
RFC

OL

Type

Range(३)

OL


Parameter

						OL			K	FC		OL		RFC						
5.01	Output frequ	iency		{0.11		PEED_FI MAX H:		-	±1,25	60.0 Hz					RO	Bi	FI	NC	PT	
5.02	Output volta	ge					0 to A	\C_volta	age_max V						RO	Uni	FI	NC	PT	
5.03	Output power	er						ower_r	max kW						RO	Bi	FI	NC	PT	
5.04	Motor rpm			{0.10	±1	180,000	•								RO	Bi	FI	NC	PT	
5.05	D.C bus volt	_						DC_vol	tage_max V						RO	Uni	FI	NC	PT	
5.06	Rated freque			{0.47	_	to 3,000			0 to 1,2	250.0 H	lz			USA> 60.0	RW	Uni				US
5.07	Motor rated	curren	ıt	{0.46		0	to Ra	ated_cu	irrent_max A					rent_max	RW	Uni		RA		US
5.08	Rated load r	pm / ra	ated speed	{0.45	0 to	180,000	0 rpm		0.00 to 40	,000.00) rpm	1,50 USA 1,80	0 >	EUR> 1,450.00 USA> 1,770.00	RW	Uni				US
5.09	Rated voltag	je		{0.44		0 to	AC_V	OLTAG	GE_SET_MA	×ν		400V	drive: 75V dri	ve: 230 EUR> 400 USA> 460 ve: 575 ve: 690	RW	Uni		RA		US
5.10	Rated powe			{0.43				0.000 to					0.8		RW	Uni		RA		US
5.11	Number of n	notor p	ooles	{0.42				o 120 P	ole (0 to 60)				Auto	` '	RW	Txt				US
5.12	Autotune			{0.40		0 to 2			0	to 4			0		RW	Uni		NC		
5.13	Dynamic V/F select	- / flux	optimise	{0.09	OFF	(0) or C	On (1)					OFF	(0)		RW	Bit				US
5.14	Voltage mod	ov frequency voltage boost {0.0			Fd (2), I	_S (0), U Ur_Auto (4), SrE ((3), L	Jr_l				Fd (2	2)		RW	Txt				US
5.15	Low frequen					0.0 to	25.0	% of m	otor rated vo	ltage				3: 3.0 k 5: 2.0 6: 1.0	RW	Uni				US
5.17	Stator resista	Stator resistance							00 to 65.000 i 65.000 x 10 r				0.0	0	RW	Uni		RA		US
5.18	Maximum sv	vitchin	g frequency	{0.41	3	3 (0), 4 (1), 6 ((2), 8 (3	3), 12 (4), 16	(5) kHz	:		3 (0)	RW	Txt		RA		US
5.19	High stability modulation	/ space	e vector		OFF	(0) or C	On (1)					OFF	(0)		RW	Bit				US
5.20	Quasi-squar	e enal	ble		OFF	(0) or 0	On (1)					OFF	(0)		RW	Bit				US
5.21	Field gain re	ductio	n						OFF (0)	or On	(1)			OFF (0)	RW	Bit				US
5.23	Voltage offse	et			0.	.0 to 25.	0 V					0.0			RW	Uni		RA		US
5.24	Transient ind	ductan	ce (σL _s)				0.00	00 to 50	0.000 mH			0.00	0		RW	Uni		RA		US
5.25	Stator induct	tance ((L _s)						0.00 to 5,	00.00	mH			0.00	RW	Uni		RA		US
5.26	High dynam enable	ic perf	ormance						OFF (0)	or On	(1)			OFF (0)	RW	Bit				US
5.27	Enable slip	compe	nsation		OFF	(0) or C	On (1)					On (1)		RW	Bit				US
5.28	Field weake disable	ning co	ompensation						OFF (0)	or On	(1)			OFF (0)	RW	Bit				US
5.29	Motor satura	ation b	reakpoint 1						0 to 100%	of rate	d flux			50	RW	Uni				US
5.30	Motor satura	tion b	reakpoint 2						0 to 100%	of rate	d flux			75	RW	Uni				US
5.31	Voltage cont	Motor saturation breakpoint 2 /oltage controller gain						0 to	30				1		RW	Uni				US
5.32	Motor torque	Motor torque per amp, K _t								500.0 n A ⁻¹	0				RO	Uni				US
5.35		Disable auto switching frequency change					OF	FF (0) o	or On (1)				OFF	(0)	RW	Bit				US
5.37	Actual switch	Actual switching frequency 3 (0), 4 (1), 6 (2), 8 (3), 12 (4), 16 (5), 6 rEd (6), 12 rEd (2 rEd (7)				RO	Txt		NC	PT					
5.40	Spin start bo	ost		(0.18) (0, 4 (1), 6 (2), 8 (3), 12 (4), 16 (3), 6 (Ed (6), 12 (Ed						1.0	0	RW	Uni				US			
	Read / Write	RO	Read only	Ur			Bi	Bi-pola		Bit	Bit para		Txt	Text string						
FI I	Filtered	DE	Destination	NO	Not copie	ed	RA	Rating	dependent	PT	Protecte	:d	US	User save		PS	Pow	er do	wn s	ave

152 Affinity User Guide www.controltechniques.com

Safety Product Mechanical SMARTCARD Advanced **UL** Listing PC tools Optimization Diagnostics Information Information Installation Installation Started parameters the motor operation parameters Data Information

11.6 Menu 6: Sequencer and clock

Safety	Product	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD		Advanced	Technical		UL Listina
Calcty	1 100000	Wiconamoai	Licotilloai	Cotting	Daoio	i tarii iii ig	Optimization	CIVIALLICALLE	DC tools	Advanced	recininear	Diagnostics	OL Libing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information
IIIIOIIIIalioii	IIIIOIIIIatioii	IIIStaliation	IIIStaliation	Starteu	parameters	tile illotoi		operation		parameters	Data		IIIIOIIIIatioii

RFC

COASt (0), rP (1), no.rP (2)

Default(⇒)

rP (1)

diS (0)

OL

RFC

RW Txt

RW Txt

Type

US

US

Range(३)

diS (0), StoP (1), ridE.th (2)

OL

COASt (0), rP (1), rP.dcl (2), dcl (3), td.dcl (4), diSAbLE (5)

6.04	Start / stop logi	c selec	ct			l		0	to 4			4		RW	Uni				US
6.06	Injection braking	g level	l			0 to 15	50.0%				100.09	6		RW	Uni	F	RA		US
6.07	Injection brakin	g time				0.0 to	25.0s				1.0			RW	Uni				US
6.08	Hold zero spee heat enable	d / Mo	tor pre-	{0.	38}		OF	F (0)	or On (1)			OFF	(0)	RW	Bit				US
6.09	Catch a spinnir	ng mot	or	{0.	39}	0 to	0 3		0 to		0		1	RW	Uni				US
6.12	Enable stop ke	y					OF	F (0)	or On (1)			OFF	(0)	RW	Bit		Ť		US
6.15	Drive enable						OF	F (0)	or On (1)			On (1)	RW	Bit				US
6.16	Date			{0.	22}			0 to 3	311299				<u>. </u>	RW	Uni	1	١C	PT	
6.17	Time			{0.	23}		C	0.00 t	o 23.59					RW	Uni	1	1C	PT	
6.18	Day of week							0	to 6					RO	Uni	1	1C	PT	
6.19	Date/time select	ction		{0.	24}			0	to 5			3		RW	Uni		Ť		
6.20	Date format			{0.	25}	Std ((0), Std.c	ds (1)	, US (2), US.ds	(3)	EUR> St	d (0), l	JSA> US (2)	RW	Txt				US
6.21	Time between	filter ch	nanges				0	to 30	,000 hrs			0		RW	Uni				US
6.22	Filter change re	equirec	d / change	e done	;		OF	F (0)	or On (1)			OFF	(0)	RW	Bit			PT	
6.23	Time before filt	er chai	nge due				0	to 30	,000 hrs					RO	Uni	1	1C	PT	PS
6.24	Reset energy r	neter					OF	F (0)	or On (1)			OFF	(0)	RW	Bit	1	1C		
6.25	Energy meter:						1	±999.	9 MWh					RO	Bi	1	VC	PT	PS
6.26	Energy meter:	kWh					:	±99.9	9 kWh					RO	Bi	1	VC	PT	PS
6.27	Energy cost pe	r kWh					-	0.0 to	600.0					RW	Uni	1	VC	PT	PS
6.28	Running cost							±32	2,000					RO	Bi	1	1C	PT	
6.29	Hardware enab	le					OF	F (0)	or On (1)					RO	Bit	1	1C	PT	
6.30	Sequencing bit	: Run f	forward						or On (1)			OFF	(0)	RW	Bit	1	1C		
6.31	Sequencing bit	: Jog fo	orward				OF	F (0)	or On (1)			OFF	(0)	RW	Bit	1	1C		
6.32	Sequencing bit	: Run r	reverse				OF	F (0)	or On (1)			OFF	(0)	RW	Bit	1	1C		
6.33	Sequencing bit	: Forwa	ard / reve	erse			OF	F (0)	or On (1)			OFF	(0)	RW	Bit	1	1C		
6.34	Sequencing bit	: Run					OF	F (0)	or On (1)			OFF	(0)	RW	Bit	1	1C		
6.35	Forward limit s	witch					OF	F (0)	or On (1)			OFF	(0)	RW	Bit	1	1C		
6.36	Reverse limit s	witch					OF	F (0)	or On (1)			OFF	(0)	RW	Bit	1	1C		
6.37	Sequencing bit	: Jog r	everse				OF	F (0)	or On (1)			OFF	(0)	RW	Bit	1	1C		
6.39	Sequencing bit	: Not s	top				OF	F (0)	or On (1)			OFF	(0)	RW	Bit	1	1C		
6.40	Enable sequen	cer late	ching				OF	F (0)	or On (1)			OFF	(0)	RW	Bit				US
6.41	Drive event flag	js							65,535			0		RW	Uni		1C		
6.42	Control word							0 to :	32,767			0		RW	Uni	1	1C		
6.43	Control word e	nable					OF	F (0)	or On (1)			OFF	(0)	RW	Bit				US
6.44	Active supply							. ,	or On (1)					RO	Bit	1	1C	PT	
6.45	Force cooling f	an to r	un at full s	speed				. ,	or On (1)			OFF	(0)	RW	Bit				US
6.46	Nominal low vo	ltage s	supply				2, 3 and	200	1: 48V V size 4: 48V to o 6: 48V to 96V	72V		48		RW	Uni			РТ	US
6.47	Disable phase rectifier	loss de	etection fr	rom inp	put		OF	F (0)	or On (1)			OFF		RW	Bit				US
6.48	Line power sup detection level	ply los	ss ride thr	ough		0 t	o DC_V	OLTA	GE_SET_MAX	V	400 575	OV driv SV driv	e: 205, e: 410, e: 540, ve: 540	RW	Uni	F	RA		US
6.49	Enable date/tin	ne in tr	ip log				OF	F (0)	or On (1)			OFF		RW	Bit		-	$\neg \dagger$	US
6.50	Drive comms s								1(1), SLot 2 (2)					RO	Txt		VC	PT	\neg
6.51	External rectifie	er not a	active						or On (1)			OFF	(0)	RW	Bit			7	-
6.52	Motor pre-heat	current	t magnitud	de { 0 .	39}				100 %			0		RW	Uni			T	US
6.53	Sleep/wake thre	eshold	· · · · · · · · · · · · · · · · · · ·	{0.	15}	±			Q_MAX Hz/rpm			0.0)	RW	Uni			T	US
6.54	Sleep/wake del	ay time	•		16}		0).0 to	250.0 s			10.0	0	RW	Uni				US
RW F	Read / Write F	0 R	ead only		Uni	Jnipolar	Bi	Bi-	polar	Bit	Bit parameter	Txt	t Text strin	g					
FI F	iltered	E D	estination	1	NC I	Not copied	RA	Ra	ting dependent	PT	Protected	US	User sav	е	PS	Powe	r dov	vn sa	ave

Parameter

Line power supply loss mode

6.01

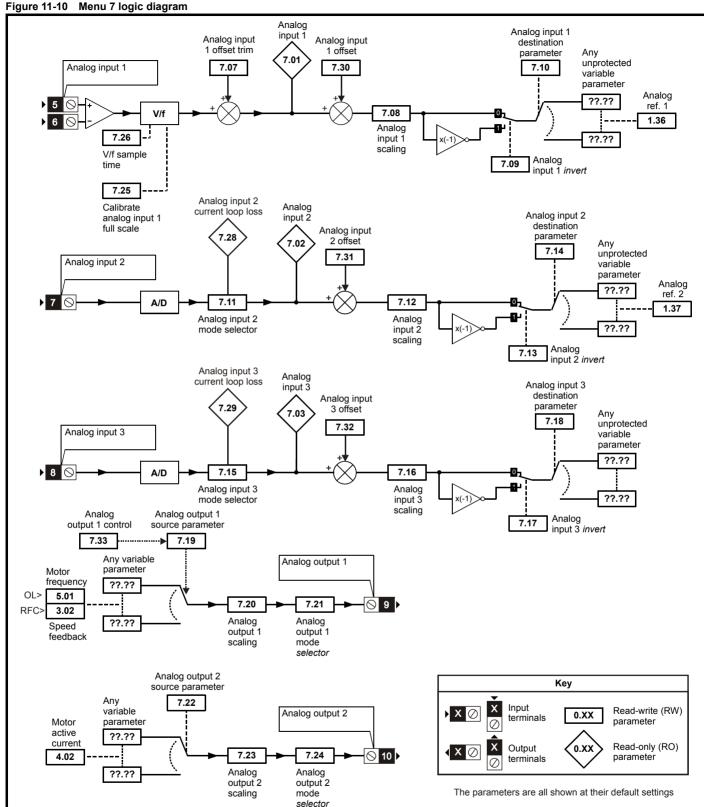
6.03

Stop mode

speed if the drive is not in a UU condition.

^{**}For more information, refer to section 11.21.9 Line power supply loss modes on page 209.

^{***}For more information, refer to section 11.21.10 Catch a spinning motor on page 210.


^{****}The drive thermal model system normally controls the fan speed, however the fan can be forced to operate at full speed if this parameter is set to 1. When this is set to 1 the fan remains at full speed until 10s

^{*****}For more information refer to section 6.2.17 Hold zero speed / preheat on page 103.

Safety Product Mechanical Electrical Getting Basic SMARTCARD Advanced **UL** Listing PC tools Optimization Diagnostics Information Installation Started Information Installation parameters the moto operation parameters Data Information

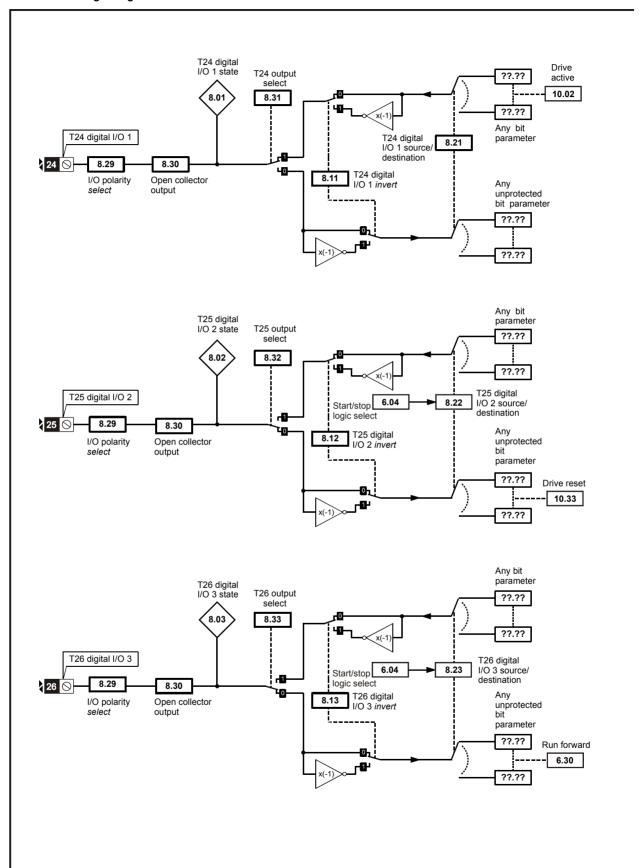
11.7 Menu 7: Analog I/O

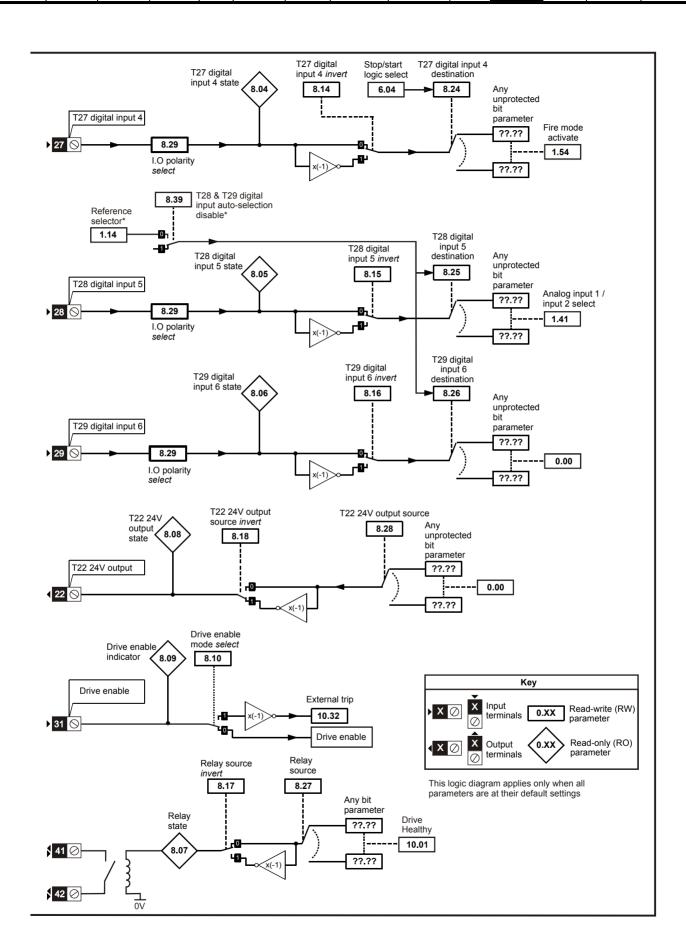
Figure 11-10 Menu 7 logic diagram

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

	Parameter	Rai	nge(♀)	Defau	ılt(⇔)			Tv.	ре		
	Farameter	OL	RFC	OL	RFC			ıy	þe		
7.01	T5/6 analog input 1 level	±10	0.00 %			RO	Bi		NC	PT	
7.02	T7 analog input 2 level	±1	00.0 %			RO	Bi		NC	PT	
7.03	T8 analog input 3 level	±1	00.0 %			RO	Bi		NC	PT	
7.04	Power circuit temperature 1	-128	to 127 °C			RO	Bi		NC	PT	
7.05	Power circuit temperature 2	-128	to 127 °C			RO	Bi		NC	PT	
7.06	Control board temperature	-128	to 127 °C			RO	Bi		NC	PT	
7.07	T5/6 analog input 1 offset trim	±10	0.000 %	0.0	000	RW	Bi	1			US
7.08	T5/6 analog input 1 scaling	0 t	4.000	1.0	000	RW	Uni	1			US
7.09	T5/6 analog input 1 invert	OFF (0)) or On (1)	OFF	(0)	RW	Bit				US
7.10	T5/6 analog input 1 destination	Pr 0.00	to Pr 50.99	Pr 1	1.36	RW	Uni	DE		PT	US
7.11	T7 analog input 2 mode {0.19}		4-20.tr (2), 20-4.tr (3), -4 (5), VOLt (6)	4-20	0 (4)	RW	Txt				US
7.12	T7 analog input 2 scaling	0 t	4.000	1.0	000	RW	Uni				US
7.13	T7 analog input 2 invert)) or On (1)	OFF	(0)	RW	Bit				US
7.14	T7 analog input 2 destination {0.20}		to Pr 50.99	Pr 1	1.37	RW	Uni	DE		PT	US
7.15	T8 analog input 3 mode {0.21}	4-20 (4), 20-4 (5)	4-20.tr (2), 20-4.tr (3), , VOLt (6), th.SC (7), th.diSP (9)	VOL	t (6)	RW	Txt				US
7.16	T8 analog input 3 scaling	0 t	4.000	1.0	000	RW	Uni	†			US
7.17	T8 analog input 3 invert	OFF (0)) or On (1)	OFF	(0)	RW	Bit				US
7.18	T8 analog input 3 destination	Pr 0.00	to Pr 50.99	Pr (0.00	RW	Uni	DE		PT	US
7.19	T9 analog output 1 source	Pr 0.00	to Pr 50.99	Pr 5.01	Pr 3.02	RW	Uni			PT	US
7.20	T9 analog output 1 scaling	0.000) to 4.000	1.0	000	RW	Uni				US
7.21	T9 analog output 1 mode	VOLt (0), 0-20 (1), 4-20 (2), H.SPd (3)	VOL	t (0)	RW	Txt				US
7.22	T10 analog output 2 source	Pr 0.00	to Pr 50.99	Pr 4	1.02	RW	Uni			PT	US
7.23	T10 analog output 2 scaling	0.000) to 4.000	1.0	000	RW	Uni				US
7.24	T10 analog output 2 mode	(//), 4-20 (2), H.SPd (3)	VOL	` '	RW	Txt				US
7.25	Calibrate T5/6 analog input 1 full scale	,)) or On (1)	OFF	` '	RW	Bit		NC		
7.26	T5/6 analog input 1 sample time	0 to	8.0 ms	4	.0	RW	Uni				US
7.28	T7 analog input 2 current loop loss	,)) or On (1)			RO	Bit		NC	PT	
7.29	T8 analog input 3 current loop loss	,)) or On (1)			RO	Bit		NC	PT	
7.30	T5/6 analog input 1 offset		00.00 %	0.		RW	Bi				US
7.31	T7 analog input 2 offset		00.0 %	0	-	RW	Bi				US
7.32	T8 analog input 3 offset	_ :	00.0 %	_	.0	RW	Bi				US
7.33	T9 analog output 1 control		i (1), AdV (2)	AdV	['] (2)	RW	Txt				US
7.34	IGBT junction temperature	±2	200 °C			RO	Bi		NC	PT	
7.35	Drive thermal protection accumulator	0 to	100.0 %			RO	Uni		NC	PT	
7.36	Power circuit temperature 3	-128	to 127 °C			RO	Bi		NC	PT	

I	RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
I	FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save


156 Affinity User Guide Issue Number: 3 www.controltechniques.com


Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor SMARTCARD operation Advanced parameters Technical Data UL Listing Information PC tools Optimization Diagnostics

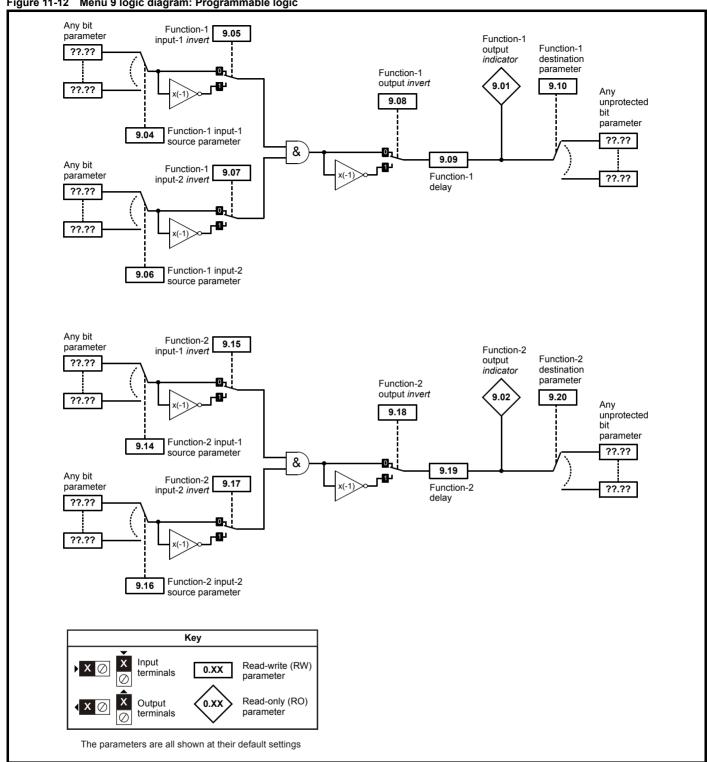
Getting Started Safety Product Mechanical Electrical SMARTCARD Advanced **UL** Listing Optimization PC tools Diagnostics Information Installation the motor Information Installation parameters operation parameters Data Information

11.8 Menu 8: Digital I/O

Figure 11-11 Menu 8 logic diagram

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

	Parameter	F	ange(≎)	Defa	ılt(⇔)	T		Ту	no		
	raiailletei	OL	RFC	OL	RFC			ıy	þe		
8.01	T24 digital I/O 1 state	OFF	(0) or On (1)			RO	Bit		NC	PT	
8.02	T25 digital I/O 2 state	OFF	(0) or On (1)			RO	Bit		NC	PT	
8.03	T26 digital I/O 3 state	OFF	(0) or On (1)			RO	Bit		NC	PT	
8.04	T27 digital input 4 state	OFF	(0) or On (1)			RO	Bit		NC	PT	
8.05	T28 digital input 5 state	OFF	(0) or On (1)			RO	Bit		NC	PT	
8.06	T29 digital input 6 state	OFF	(0) or On (1)			RO	Bit		NC	PT	
8.07	Relay state	OFF	(0) or On (1)			RO	Bit		NC	PT	
8.08	T22 24V output state	OFF	(0) or On (1)			RO	Bit		NC	PT	
8.09	Drive enable indicator	OFF	(0) or On (1)			RO	Bit		NC	PT	
8.10	Drive enable mode select	OFF	(0) or On (1)	OFI	= (0)	RW	Bit				US
8.11	T24 digital I/O 1 invert	OFF	(0) or On (1)	OFI	= (0)	RW	Bit				US
8.12	T25 digital I/O 2 invert	OFF	(0) or On (1)	OFI	= (0)	RW	Bit				US
8.13	T26 digital I/O 3 invert	OFF	(0) or On (1)	OFI	= (0)	RW	Bit				US
8.14	T27 digital input 4 invert	OFF	(0) or On (1)	OFI	= (0)	RW	Bit				US
8.15	T28 digital input 5 invert	OFF	(0) or On (1)	OFI	= (0)	RW	Bit				US
8.16	T29 digital input 6 invert	OFF	(0) or On (1)	OFI	= (0)	RW	Bit				US
8.17	Relay source invert	OFF	(0) or On (1)	OFI	= (0)	RW	Bit				US
8.18	T22 24V output source invert	OFF	(0) or On (1)	On	(1)	RW	Bit				US
8.20	Digital I/O read word		0 to 511			RO	Uni		NC	PT	
8.21	T24 digital I/O 1 source/ destination	Pr 0 .	00 to Pr 50.99	Pr 1	0.02	RW	Uni	DE		PT	US
8.22	T25 digital I/O 2 source/ destination	Pr 0 .	00 to Pr 50.99	Pr 1	0.33	RW	Uni	DE		PT	US
8.23	T26 digital I/O 3 source/ destination	Pr 0 .	00 to Pr 50.99	Pr (6.30	RW	Uni	DE		PT	US
8.24	T27 digital input 4 destination	Pr 0 .	00 to Pr 50.99	Pr '	1.54	RW	Uni	DE		PT	US
8.25	T28 digital input 5 destination	Pr 0 .	00 to Pr 50.99	Pr '	1.41	RW	Uni	DE		PT	US
8.26	T29 digital input 6 destination	Pr 0 .	00 to Pr 50.99	Pr (0.00	RW	Uni	DE		PT	US
8.27	Relay source	Pr 0 .	00 to Pr 50.99	Pr 1	0.01	RW	Uni			PT	US
8.28	T22 24V output source	Pr 0 .	00 to Pr 50.99	Pr (0.00	RW	Uni			PT	US
8.29	Positive logic select {0.51}		(0) or On (1)		(1)	RW	Bit			PT	US
8.30	Open collector output		(0) or On (1)		= (0)	RW	Bit				US
8.31	T24 digital I/O 1 output select		(0) or On (1)		(1)	RW	Bit				US
8.32	T25 digital I/O 2 output select	OFF	(0) or On (1)	OFI	= (0)	RW	Bit				US
8.33	T26 digital I/O 3 output select	OFF	(0) or On (1)	OFI	= (0)	RW	Bit				US
8.39	T28 & T29 digital input auto- selection disable	OFF	(0) or On (1)	Om	(1)	RW	Bit				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

160 Affinity User Guide Issue Number: 3 www.controltechniques.com

Safety Product SMARTCARD **UL** Listing Optimization PC tools Diagnostics Information Information Installation Started the motor Installation parameters operation Information

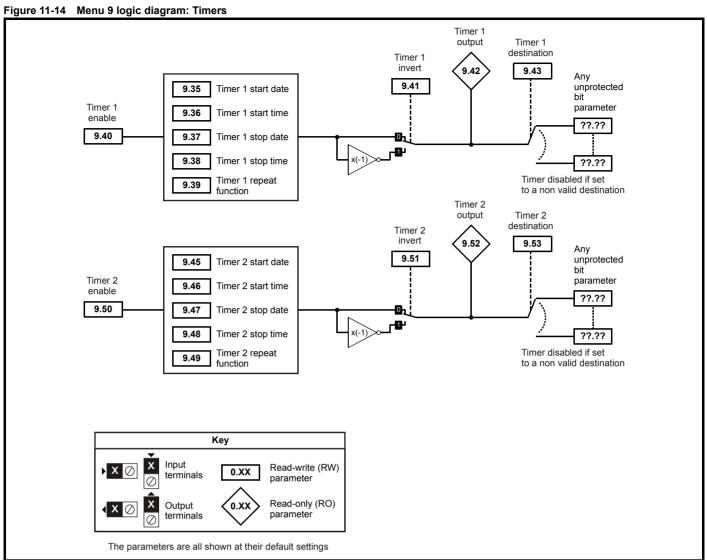

11.9 Menu 9: Programmable logic, motorized pot, binary sum and timers

Figure 11-12 Menu 9 logic diagram: Programmable logic

Getting Started Product Mechanical Electrical SMARTCARD Advanced **UL** Listing Optimization PC tools Diagnostics Information Information the motor Data Information Installation Installation parameters operation parameters

Figure 11-13 Menu 9 logic diagram: Motorized pot and binary sum Motorized pot. bipolar Motorized pot. Motorized pot. Motorized output indicator destination select pot. rate parameter 9.22 9.23 9.03 9.25 Motorized pot. unprotected variable up 9.26 parameter ??.?? 9.24 Motorized pot. ??.?? output scale 9.27 Function disabled if set to a non valid destination Motorized pot. down Motorized pot. 9.28 9.21 Motorized pot. reset to zero Binary-sum logic output value Binary-sum logic destination Binary-sum offset parameter 9.34 9.33 9.32 9.29 Any unprotected Binary-sum bit logic ones (LSB) parameter ??.?? 9.30 Σ ??.?? Binary-sum logic twos Function disabled if set to a non valid destination 9.31 Key Binary-sum logic fours (MSB) Input Read-write (RW) 0.XX terminals parameter \bigcirc Read-only (RO) Output 0.XX parameter terminals The parameters are all shown at their default settings

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

	Doromotor		Ranç	je(�)	Defa	ult(⇔)			т.			
	Parameter		OL	RFC	OL	RFC			Ту	pe		
9.01	Logic function 1 output		OFF (0)	` '			RO	Bit		NC	PT	
9.02	Logic function 2 output		OFF (0)	or On (1)			RO	Bit		NC	PT	
9.03	Motorized pot output			.00 %			RO	Bi		NC	PT	PS
9.04	Logic function 1 source 1		Pr 0.00 to	Pr 50.99		0.00	RW	Uni			PT	US
9.05	Logic function 1 source 1 invert		. ,	or On (1)		= (0)	RW	Bit				US
9.06	Logic function 1 source 2		Pr 0.00 to	Pr 50.99		0.00	RW	Uni			PT	US
9.07	Logic function 1 source 2 invert		, ,	or On (1)		= (0)	RW	Bit				US
9.08	Logic function 1 output invert		()	or On (1)	OFI	= (0)	RW	Bit				US
9.09	Logic function 1 delay		-	i.0 s		.0	RW	Bi			<u> </u>	US
9.10	Logic function 1 destination			Pr 50.99		0.00	RW	Uni	DE		PT	US
9.14	Logic function 2 source 1			Pr 50.99		0.00	RW	Uni			PT	US
9.15	Logic function 2 source 1 invert		. ,	or On (1)		= (0)	RW	Bit				US
9.16	Logic function 2 source 2			Pr 50.99		0.00	RW	Uni			PT	US
9.17	Logic function 2 source 2 invert		. ,	or On (1)		= (0)	RW	Bit		Щ	Щ	US
9.18	Logic function 2 output invert		. ,	or On (1)		= (0)	RW	Bit		Щ	Щ	US
9.19	Logic function 2 delay			5.0 s		.0	RW	Bi		<u> </u>	<u> </u>	US
9.20	Logic function 2 destination			Pr 50.99		0.00	RW	Uni	DE	₩	PT	US
9.21	Motorized pot mode			03		2	RW	Uni		<u> </u>	<u> </u>	US
9.22	Motorized pot bipolar select		, ,	or On (1)		= (0)	RW	Bit		<u> </u>	<u> </u>	US
9.23	Motorized pot rate			250 s		20	RW	Uni		↓	<u> </u>	US
9.24	Motorized pot scale factor			o 4.000		000	RW	Uni		<u> </u>		US
9.25	Motorized pot destination			Pr 50.99		0.00	RW	Uni	DE		PT	US
9.26	Motorized pot up		. ,	or On (1)		(0)	RW	Bit		NC	<u> </u>	
9.27	Motorized pot down		OFF (0)	, ,		= (0)	RW	Bit		NC	<u> </u>	
9.28	Motorized pot reset		. ,	or On (1)		(0)	RW	Bit		NC		
9.29	Binary sum ones input		. ,	or On (1)		= (0)	RW	Bit		NC	<u> </u>	
9.30	Binary sum twos input		. ,	or On (1)		= (0)	RW	Bit		NC NC		
9.31	Binary sum fours input		. ,	or On (1)	OFI	= (0)	RW	Bit		NC	PT	
9.32	Binary sum output Binary sum destination			255	De	0.00	RO RW	Uni	DE	INC	PT	US
9.34	Binary sum offset			248		0.00	RW	Uni	DE	<u> </u>	FI	US
9.35	Timer 1 start date	{0.52}		11299		0	RW	Uni		<u> </u>	PT	US
9.36	Timer 1 start time	{0.52}		23.59		00	RW	Uni		├	PT	US
9.37	Timer 1 start time	{0.53}		11299		00	RW	Uni		 	PT	US
9.38	Timer 1 stop time	{0.54}		23.59		00	RW	Uni		₩	PT	US
9.39	Timer 1 stop time Timer 1 repeat function	{0.56}		0 6		00	RW	Uni		\vdash	PT	US
9.40	Timer 1 repeat function	{0.50}		or On (1)		= (0)	RW	Bit		\vdash	' '	US
9.41	Timer 1 invert	(0.01)	OFF (0)	()		= (0)	RW	Bit		\vdash	\vdash	US
9.42	Timer 1 output		. ,	or On (1)	OI I	(*)	RO	Bit		 	PT	
9.43	Timer 1 destination	{0.58}	Pr 0.00 to	. ,	Pr	0.00	RW	Uni		 	PT	US
9.45	Timer 2 start date	(0.00)		11299)	RW	Uni		\vdash	PT	US
9.46	Timer 2 start time			23.59		00	RW	Uni		\vdash	PT	US
9.47	Timer 2 stop date		0 to 3			0	RW			\vdash		
9.48	Timer 2 stop time		0.00 to			00	RW			\vdash	PT	US
9.49	Timer 2 repeat function			0 6		0	RW			\vdash		US
9.50	Timer 2 enable			or On (1)		= (0)	RW	Bit		\vdash	\vdash	US
9.51	Timer 2 invert			or On (1)		= (0)	RW	Bit		\vdash	\vdash	US
9.52	Timer 2 output			or On (1)	011	(-)	RO	Bit		\vdash	PT	
9.53	Timer 2 destination		. ,	Pr 50.99	Pr	0.00	RW			\vdash	PT	US

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

164 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

11.10 Menu 10: Status and trips

	Down-ston	Rang	je(�)	Defa	ult(⇨)			T		
	Parameter	OL	RFC	OL	RFC	1		Type		
10.01	Drive OK	OFF (0)	or On (1)			RO	Bit	N	СР	Т
10.02	Drive active	OFF (0)				RO	Bit	N		
10.03	Zero speed		or On (1)			RO	Bit	N		
10.04	Running at or below minimum speed	. ,	or On (1)			RO	Bit	N		
10.05	Below set speed	. ,	or On (1)			RO	Bit	N		
10.06	At speed	. ,	or On (1)			RO	Bit	N		
10.07	Above set speed	. ,	or On (1) or On (1)			RO	Bit	N N		
10.08	Load reached Drive output is at current limit		or On (1)			RO RO	Bit Bit	N		
10.10	Regenerating	()	or On (1)			RO	Bit	N		
10.11	Braking IGBT active		or On (1)			RO	Bit	N		
10.12	Braking resistor alarm	OFF (0)	` '			RO	Bit	N		
10.13	Direction commanded	. ,	[0 = FWD, 1 = REV]			RO	Bit	N		
10.14	Direction running	OFF (0) or On (1)	0 = FWD, 1 = REV]			RO	Bit	N	СР	Т
10.15	Line power supply loss	OFF (0)	or On (1)			RO	Bit	N	СР	Т
10.16	Under voltage active	OFF (0)	or On (1)			RO	Bit	N	СР	Т
10.17	Overload alarm		or On (1)			RO	Bit	N		
10.18	Drive over temperature alarm	OFF (0)				RO	Bit	N		
10.19	Drive warning		or On (1)			RO	Bit	N		
10.20	Trip 0		232*			RO	Txt	N		T PS
10.21	Trip 1	0 to				RO	Txt	N		
10.22	Trip 2	0 to				RO	Txt	N		
10.23	Trip 3 Trip 4	0 to 0 to				RO RO	Txt	N N		
10.24	Trip 5	0 to				RO	Txt	N		
10.25	Trip 6	0 to				RO	Txt	N		
10.27	Trip 7	0 to				RO	Txt	N		
10.28	Trip 8	0 to				RO	Txt	N		
10.29	Trip 9	0 to				RO	Txt		C P	
10.30	Full power braking time	0.00 to	400.00 s	See Ta	ble 11-6	RW	Uni			US
10.31	Full power braking period	0.0 to 1	500.0 s	See Ta	ble 11-6	RW	Uni			US
10.32	External trip	OFF (0)	or On (1)	OF	F (0)	RW	Bit	N	С	
10.33	Drive reset	OFF (0)	or On (1)	OF	F (0)	RW	Bit	N	С	
10.34	No. of auto-reset attempts		6 (inf)		0	RW	Txt			US
10.35	Auto-reset delay		25.0 s		.0	RW	Uni			US
10.36	Hold drive OK until last attempt		or On (1)		F (0)	RW	Bit			US
10.37	Action on trip detection		15		0	RW	Uni			US
10.38	User trip		255	,	0	RW	Uni	N		_
10.39	Braking energy overload accumulator		00.0 %			RO	Uni		C P	
10.40	Status word Trip 0 date	0 to 3	31.12			RO RO	Uni	N	C P	
	Module number for trip 0, or, Trip 0 time		hours.minutes			RO	Uni	—		T PS
10.43	Trip 1 date		31.12			RO	Uni		C P	
10.44	Module number for trip 1, or, Trip 1 time		hours.minutes			RO	Uni		C P	
10.45	Trip 2 date		31.12			RO	Uni		C P	
10.46	Module number for trip 2, or, Trip 2 time	00.00 to 23.59	hours.minutes			RO	Uni	N	СР	T PS
10.47	Trip 3 date	0.00 to	31.12			RO	Uni	N	СР	T PS
10.48	Module number for trip 3, or, Trip 3 time	00.00 to 23.59	hours.minutes			RO	Uni		C P	
	Trip 4 data	0.00 to	31.12			RO	Uni		C P	
10.49	Trip 4 date	0.00 10						l N	CIP	
10.50	Module number for trip 4, or, Trip 4 time	00.00 to 23.59	hours.minutes			RO	Uni			T PS
10.50 10.51	Module number for trip 4, or, Trip 4 time Trip 5 date	00.00 to 23.59 0.00 to	31.12			RO	Uni	N	C P	
10.50 10.51 10.52	Module number for trip 4, or, Trip 4 time Trip 5 date Module number for trip 5, or, Trip 5 time	00.00 to 23.59 0.00 to 00.00 to 23.59	hours.minutes			RO RO	Uni Uni	N N	СР	T PS
10.50 10.51 10.52 10.53	Module number for trip 4, or, Trip 4 time Trip 5 date Module number for trip 5, or, Trip 5 time Trip 6 date	00.00 to 23.59 0.00 to 00.00 to 23.59 0.00 to	31.12 hours.minutes 31.12			RO RO RO	Uni Uni Uni	N N	C P	T PS
10.50 10.51 10.52 10.53 10.54	Module number for trip 4, or, Trip 4 time Trip 5 date Module number for trip 5, or, Trip 5 time Trip 6 date Module number for trip 6, or, Trip 6 time	00.00 to 23.59 0.00 to 00.00 to 23.59 0.00 tr 00.00 to 23.59	o 31.12 hours.minutes o 31.12 hours.minutes			RO RO RO RO	Uni Uni Uni Uni	N N N	C P C P	T PS
10.50 10.51 10.52 10.53 10.54 10.55	Module number for trip 4, or, Trip 4 time Trip 5 date Module number for trip 5, or, Trip 5 time Trip 6 date Module number for trip 6, or, Trip 6 time Trip 7 date	00.00 to 23.59 0.00 to 00.00 to 23.59 0.00 tr 00.00 to 23.59 0.00 to	hours.minutes hours.minutes hours.minutes hours.minutes			RO RO RO RO	Uni Uni Uni Uni Uni	N N N	C P C P C P	T PS T PS T PS
10.50 10.51 10.52 10.53 10.54 10.55 10.56	Module number for trip 4, or, Trip 4 time Trip 5 date Module number for trip 5, or, Trip 5 time Trip 6 date Module number for trip 6, or, Trip 6 time Trip 7 date Module number for trip 7, or, Trip 7 time	00.00 to 23.59 0.00 tr 00.00 to 23.59 0.00 tr 00.00 to 23.59 0.00 tr 00.00 to 23.59	hours.minutes hours.minutes hours.minutes hours.minutes hours.minutes			RO RO RO RO RO RO	Uni Uni Uni Uni Uni Uni	N N N N	C P C P C P	T PS T PS T PS T PS
10.50 10.51 10.52 10.53 10.54 10.55 10.56 10.57	Module number for trip 4, or, Trip 4 time Trip 5 date Module number for trip 5, or, Trip 5 time Trip 6 date Module number for trip 6, or, Trip 6 time Trip 7 date Module number for trip 7, or, Trip 7 time Trip 8 date	00.00 to 23.59 0.00 tr 00.00 to 23.59 0.00 tr 00.00 to 23.59 0.00 tr 00.00 to 23.59 0.00 to 23.59	hours.minutes 31.12 hours.minutes 31.12 hours.minutes 31.12 hours.minutes 31.12			RO RO RO RO RO RO RO	Uni Uni Uni Uni Uni Uni Uni Uni	N N N N	C PC PC PC P	T PS T PS T PS T PS T PS T PS
10.50 10.51 10.52 10.53 10.54 10.55 10.56 10.57 10.58	Module number for trip 4, or, Trip 4 time Trip 5 date Module number for trip 5, or, Trip 5 time Trip 6 date Module number for trip 6, or, Trip 6 time Trip 7 date Module number for trip 7, or, Trip 7 time Trip 8 date Module number for trip 8, or, Trip 8 time	00.00 to 23.59 0.00 tr 00.00 to 23.59	hours.minutes 31.12 hours.minutes 31.12 hours.minutes 31.12 hours.minutes 31.12 hours.minutes			RO RO RO RO RO RO RO RO	Uni Uni Uni Uni Uni Uni Uni Uni Uni	N N N N N	C P C P C P C P C P	T PS
10.50 10.51 10.52 10.53 10.54 10.55 10.56 10.57	Module number for trip 4, or, Trip 4 time Trip 5 date Module number for trip 5, or, Trip 5 time Trip 6 date Module number for trip 6, or, Trip 6 time Trip 7 date Module number for trip 7, or, Trip 7 time Trip 8 date	00.00 to 23.59 0.00 tr 00.00 to 23.59	hours.minutes 31.12 hours.minutes 31.12 hours.minutes 31.12 hours.minutes 31.12			RO RO RO RO RO RO RO	Uni Uni Uni Uni Uni Uni Uni Uni	N N N N N N	C PC PC PC P	T PS

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	Product	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD		Advanced	Technical		UL Listina
	Information	Installation			parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

^{*}The value given for the range is that obtained via serial communication. For the text string displayed on the drive, see Chapter 13 *Diagnostics* on page 235.

Table 11-6 Defaults for Pr 10.30 and Pr 10.31

Drive rating	Pr 10.30	Pr 10.31
200V, size 1 & 2	0.09	3.3
400V, size 1 & 2	0.02	3.3
All other ratings and frame sizes	0.	00

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

Menu 11: General drive set-up 11.11

	-	Ran	ge(�)	Defa	ıult(⇔)	T		_			\neg
	Parameter	OL	RFC	OL	RFC			Ту	Эе		
11.01	Parameter 0.11 set up	Pr 1.00 t	o Pr 50.99	Pr	5.01	RW	Uni			PT	US
11.02	Parameter 0.12 set up		o Pr 50.99		4.01	RW	Uni			PT	US
11.03	Parameter 0.13 set up	Pr 1.00 t	o Pr 50.99	Pr	4.20	RW	Uni			РΤ	US
11.04	Parameter 0.14 set up	Pr 1.00 t	o Pr 50.99	Pr	2.04	RW	Uni			PΤ	US
11.05	Parameter 0.15 set up	Pr 1.00 t	o Pr 50.99	Pr	6.53	RW	Uni			PT	US
11.06	Parameter 0.16 set up	Pr 1.00 t	o Pr 50.99	Pr	6.54	RW	Uni			PT	US
11.07	Parameter 0.17 set up	Pr 1.00 t	o Pr 50.99	Pr 0.00	Pr 4.12	RW	Uni			PT	US
11.08	Parameter 0.18 set up	Pr 1.00 t	o Pr 50.99	Pr	5.40	RW	Uni			PΤ	US
11.09	Parameter 0.19 set up	Pr 1.00 t	o Pr 50.99	Pr	7.11	RW	Uni			PT	US
11.10	Parameter 0.20 set up	Pr 1.00 t	o Pr 50.99	Pr	7.14	RW	Uni			PT	US
11.11	Parameter 0.21 set up	Pr 1.00 t	o Pr 50.99	Pr	7.15	RW	Uni			PT	US
11.12	Parameter 0.22 set up	Pr 1.00 t	o Pr 50.99	Pr	6.16	RW	Uni			PT	US
11.13	Parameter 0.23 set up	Pr 1.00 t	o Pr 50.99	Pr	6.17	RW	Uni			PT	US
11.14	Parameter 0.24 set up	Pr 1.00 t	o Pr 50.99	Pr	6.19	RW	Uni			PT	US
11.15	Parameter 0.25 set up	Pr 1.00 t	o Pr 50.99	Pr	6.20	RW	Uni			PT	US
11.16	Parameter 0.26 set up	Pr 1.00 t	o Pr 50.99	Pr	4.27	RW	Uni			PT	US
11.17	Parameter 0.27 set up	Pr 1.00 t	o Pr 50.99	Pr	4.28	RW	Uni			PΤ	US
11.18	Parameter 0.28 set up	Pr 1.00 t	o Pr 50.99	Pr	4.29	RW	Uni			PT	US
11.19	Parameter 0.29 set up	Pr 1.00 t	o Pr 50.99	Pr	11.36	RW	Uni			PT	US
11.20	Parameter 0.30 set up	Pr 1.00 t	o Pr 50.99	Pr	11.42	RW	Uni			PT	US
11.21	Parameter scaling	0.000	to 9.999	1.	.000	RW	Uni				US
11.22	Parameter displayed at power-up	Pr 0.00	to 00.59	Pr	0.10	RW	Uni			PT	US
11.23	PC comms address {0.37}	0 to	247		1	RW	Uni				US
11.24	PC comms mode {0.35}	AnSI (0), rt	J (1), Lcd (2)	rtl	J (1)	RW	Txt			PT	US
11.25	Baud rate {0.36}	9600 (5), 1920	(2), 2400 (3), 4800 (4), 0 (6), 38400 (7), 9)* *Modbus RTU only	192	00 (6)	RW	Txt				US
11.26	Minimum comms transmit delay	0 to 2	250ms		2	RW	Uni				US
11.28	Drive derivative	0 t	o 16			RO	Uni		NC	PT	
11.29	Software version {0.50}	1.00 t	o 99.99			RO	Uni		NC	PT	
11.30	User security code {0.34}	0 to	999		0	RW	Uni		NC	PT	PS
11.31	User drive mode {0.48}	OPEn LP	(1), rfc (2),	OPEn LP (1)	rfc (2)	RW	Txt		NC	PT	
11.32	Drive current scaling {0.32}	0.00 to	9999.99A			RO	Uni		NC	PT	
11.33	Drive voltage rating {0.31}	200 (0), 400 (1)	, 575 (2), 690 (3)			RO	Txt		NC	PT	
11.34	Software sub-version	0 t	o 99			RO	Uni		NC	PT	
11.35	Number of modules	0 t	o 10		0	RW	Uni			PT	US
11.36	SMARTCARD parameter data previously loaded {0.29}		999		0	RO	Uni			PT	US
11.37	SMARTCARD data number		1003		0	RW	Uni		NC		
11.38	SMARTCARD data type / mode		o 18			RO	Txt		NC	PT	
11.39	SMARTCARD data version		9,999		0	RW	Uni		NC		
11.40	SMARTCARD data checksum		35,335			RO	Uni		NC	PT	
11.41	Status mode timeout		250s	2	240	RW	Uni				US
	Parameter cloning {0.30}	boo	, Prog (2), AutO (3), ot (4)		nE (0)	RW			NC		*
11.43	Load defaults	. , ,	ır (1), USA (2)	nor	nE (0)	RW	Txt		NC		
11.44	Security status {0.49}		(1), Loc (2)			RW	Txt			PT	US
11.45	Select motor 2 parameters	, ,	or On (1)	OF	F (0)	RW	Bit				US
11.46	Defaults previously loaded		2000			RO	Uni		NC	PT	US
11.47	Drive Onboard PLC program enable	Run program: ou Run program: ou	ogram (0) t of range = clip (1) t of range = trip (2)	Run program: ou	ut of range = trip (2)	RW					US
11.48	Drive Onboard PLC program status	-128	to +127			RO	Bi		NC	PT	
11.49	Drive Onboard PLC programming events	0 to	35,535			RO	Uni		NC	PT	PS
11.50	Drive Onboard PLC program average scan time		i,535 ms			RO	Uni		NC		
11.51	Drive Onboard PLC program first run	OFF (0)	or On (1)			RO	Bit		NC	PT	

^{*} Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved

FI Filtered DE Destination NC Not copied RA Rating dependent PT Protected US User save PS Powe	RW Rea	ead / Write F	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	1 xt	Text string		
	FI Filte	Itered I	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Getting Started Running the motor Safety Product Mechanical Electrical Basic SMARTCARD **UL** Listing Optimization PC tools Diagnostics Information Information parameters Installation Installation operation Information

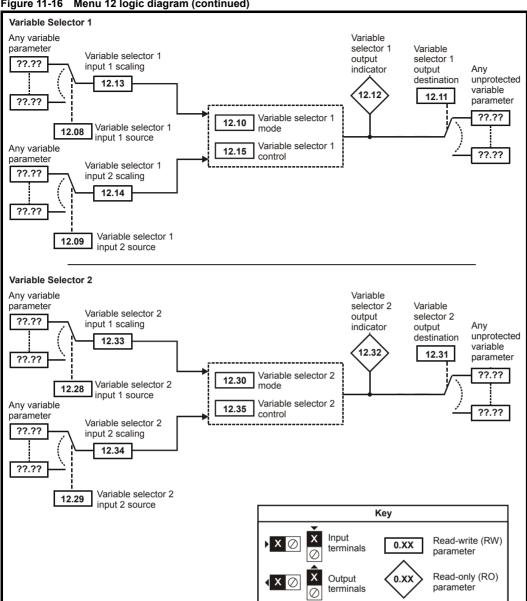

11.12 Menu 12: Threshold detectors, variable selectors and brake control function

Figure 11-15 Menu 12 logic diagram

Safety Getting SMARTCARD Advanced **UL** Listing PC tools Optimization Diagnostics Information Installation parameters Information Installation Started parameters the motor operation Data Information

Figure 11-16 Menu 12 logic diagram (continued)

UL Listing Getting Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the motor operation Data Information

The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of WARNING a Smartcard in boot mode can ensure drive parameters are immediately programmed to avoid this situation.

Figure 11-17 Open-loop brake function

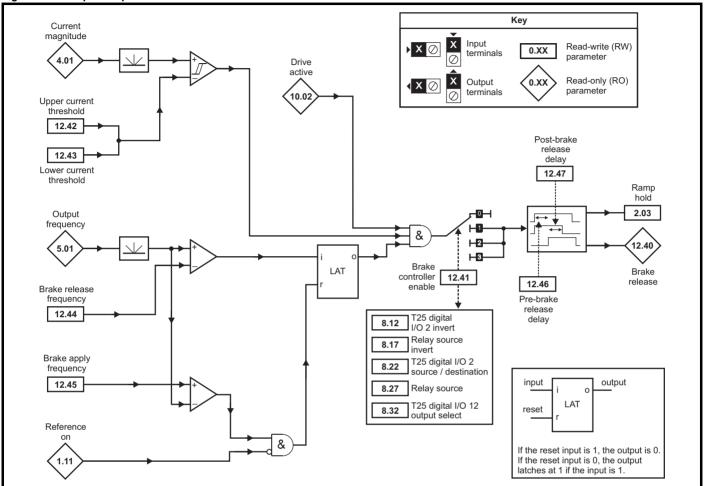
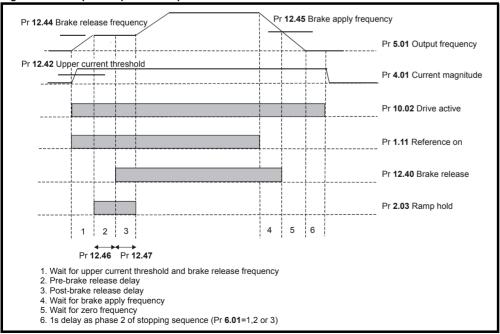
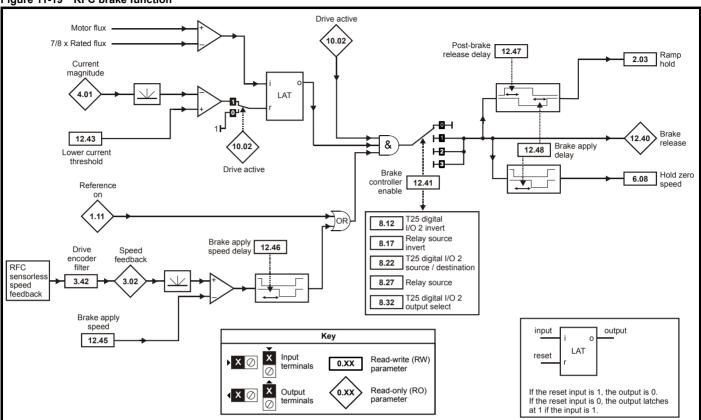
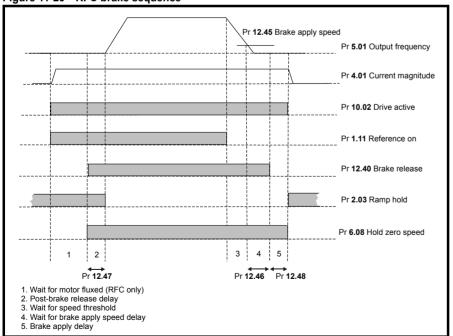



Figure 11-18 Open-loop brake sequence


UL Listing Safety Getting SMARTCARD Advanced Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the motor operation parameters Data Information


The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of a Smartcard in boot mode can ensure drive parameters are immediately programmed to avoid this situation.

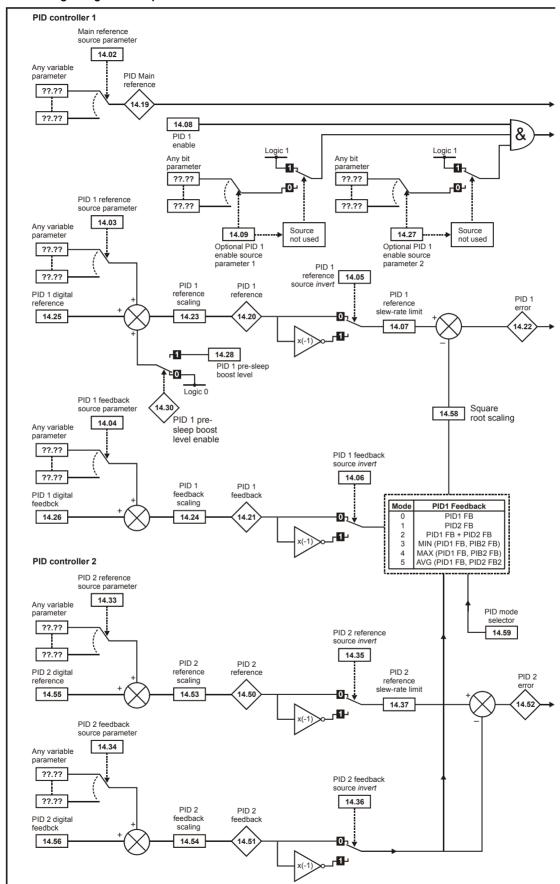
Figure 11-19 RFC brake function

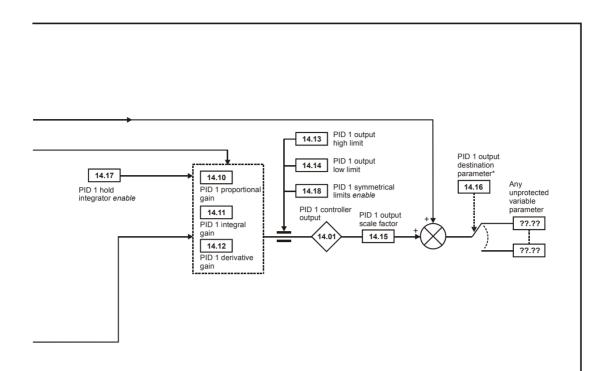
Product Information Electrical Installation Getting Started Running the motor Advanced parameters Technical Data UL Listing Information Safety SMARTCARD Optimization PC tools Diagnostics Information Installation parameters operation

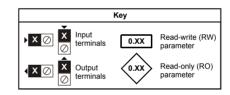
The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of WARNING a Smartcard in boot mode can ensure drive parameters are immediately programmed to avoid this situation.

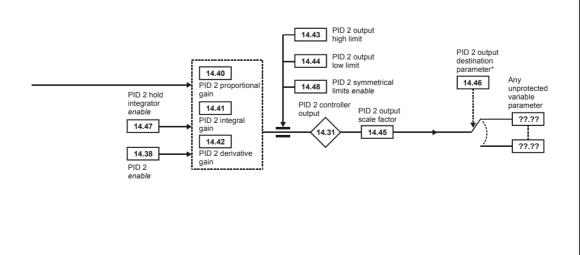
4	Damamatan	Rang	ge(♀)	Defau	lt(➪)			т.			
1	Parameter	OL	RFC	OL	RFC	1		Ту	pe		
12.01	Threshold detector 1 output		or On (1)			RO	Bit		NC	PT	
	Threshold detector 2 output		or On (1)			RO	Bit		NC	PT	
	Threshold detector 1 source		o Pr 50.99	Pr 0 .		RW	Uni			PT	
	Threshold detector 1 level		100.00 %	0.0		RW	Uni				US
	Threshold detector 1 hysteresis	0.00 to	25.00 %	0.0	0	RW	Uni				US
	Threshold detector 1 output invert	OFF (0)	or On (1)	OFF	(0)	RW	Bit				US
12.07	Threshold detector 1 destination		o Pr 50.99	Pr 0 .		RW	Uni	DE		PT	US
12.08	Variable selector 1 source 1		o Pr 50.99	Pr 0 .		RW	Uni			PT	US
12.09	Variable selector 1 source 2		o Pr 50.99	Pr 0 .	.00	RW	Uni			PT	US
12.10	Variable selector 1 mode	subtract (3), mult time constant (6), linea powers (9), sect	ect input 2 (1), add (2), iply (4), divide (5), ar ramp (7), modulus (8), ional control (10), ier monitor (11)	Select inp	out 1 (0)	RW	Uni				US
12.11	Variable selector 1 destination	Pr 0.00 to	o Pr 50.99	Pr 0 .	RW	Uni	DE		PT	US	
12.12	Variable selector 1 output	±100			RO	Bi		NC	PT		
17717	Variable selector 1 source 1 scaling	±4.	000	1.00	00	RW	Bi				US
	Variable selector 1 source 2 scaling	±4.	.000	1.00	00	RW	Bi				US
12.15	Variable selector 1 control	0.00 to	0.0	RW	Uni				US		
12.23	Threshold detector 2 source	Pr 0.00 to	Pr 0 .	.00	RW	Uni			PT	US	
12.24	Threshold detector 2 level	0.00 to	0.0	0	RW	Uni				US	
12.25	Threshold detector 2 hysteresis	0.00 to	25.00 %	0.0	0	RW	Uni				US
	Threshold detector 2 output invert	OFF (0)	or On (1)	OFF	(0)	RW	Bit				US
12.27	Threshold detector 2 destination	Pr 0.00 to	o Pr 50.99	Pr 0 .	RW	Uni	DE		PT	US	
12.28	Variable selector 2 source 1	Pr 0.00 to	o Pr 50.99	Pr 0 .	RW	Uni			PT	US	
12.29	Variable selector 2 source 2		o Pr 50.99	Pr 0 .	00	RW	Uni			PT	US
12.30	Variable selector 2 mode	subtract (3), mult time constant (6), linea powers (9), sect	ect input 2 (1), add (2), iply (4), divide (5), ar ramp (7), modulus (8), ional control (10), ier monitor (11)	Select inp	out 1 (0)	RW	Uni				US
12.31	Variable selector 2 destination	Pr 0.00 to	o Pr 50.99	Pr 0 .	.00	RW	Uni	DE		PT	US
12.32	Variable selector 2 output	±100	.00 %			RO	Bi		NC	PT	
12.33	Variable selector 2 source 1 scaling	±4.	000	1.00	00	RW	Bi				US
	Variable selector 2 source 2 scaling	±4.	000	1.00	00	RW	Bi				US
12.35	Variable selector 2 control	0.00 to	100.00 s	0.0	0	RW	Uni				US
12.40	Brake release indicator	OFF (0)	or On (1)			RO	Bit		NC	PT	
12.41	Brake controller enable	dis (0), rEL (1	dis (0)	RW	Txt				US	
12.42	Upper current threshold	0 to 200 %	50		RW	Uni				US	
	Lower current threshold	0 to 2	10		RW	Uni				US	
12.44	Brake release frequency	0.0 to 20.0 Hz	1.0		RW	Uni				US	
12.45	Brake apply frequency / speed	0.0 to 20.0 Hz	2.0	5	RW	Bit				US	
12 46	OL> Pre-brake release delay RFC> Brake apply speed delay	0.0 to	1.0			Uni				US	
	Post brake release delay	0.0 to	25.0 s	1 (RW	Uni				US
	Brake apply delay	0.0 to	0.0 to 25.0 s	1.0			Uni				US

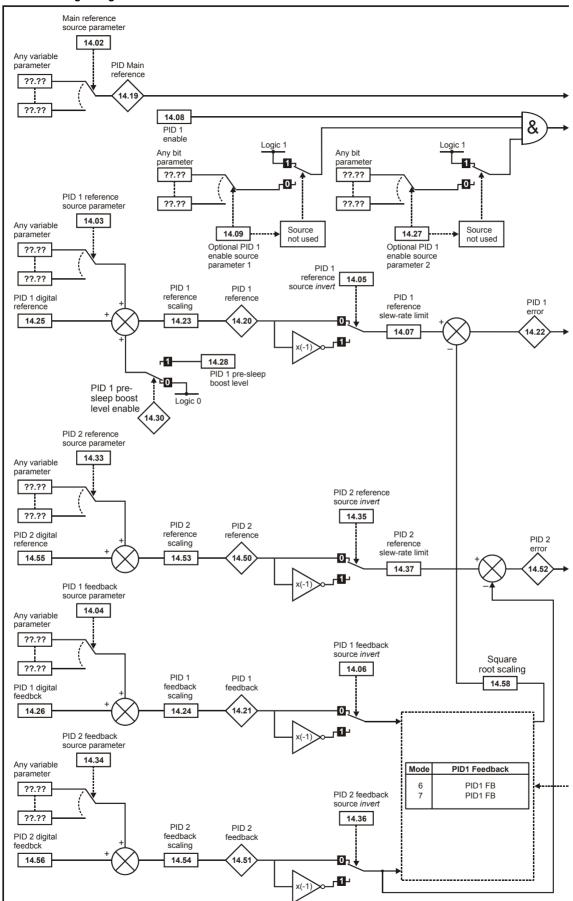

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

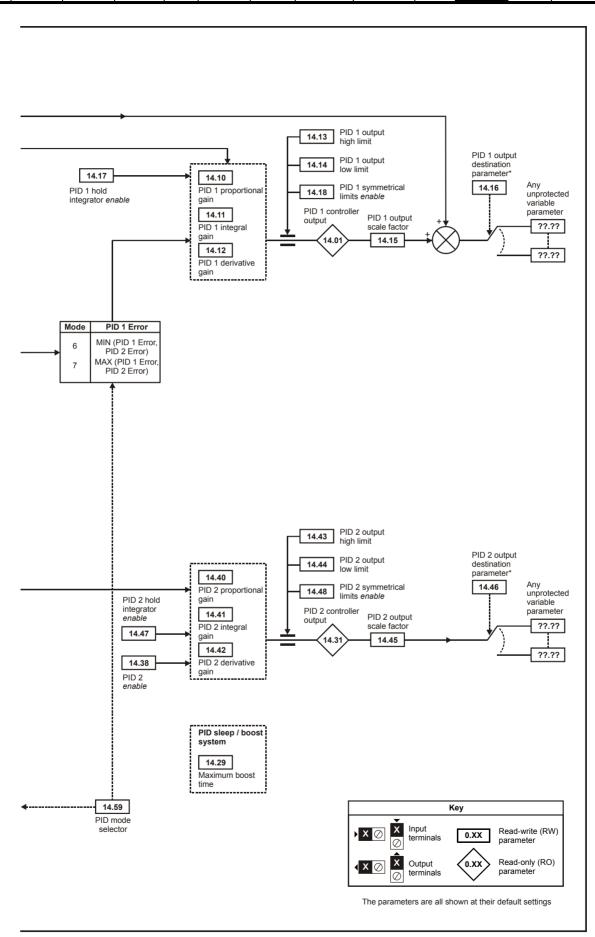

172 Affinity User Guide Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor SMARTCARD operation Advanced parameters Technical Data UL Listing Information PC tools Optimization Diagnostics


Safety Product Mechanical Electrical Getting Basic SMARTCARD Advanced **UL** Listing PC tools Optimization Diagnostics Information Started Information Installation Installation parameters the motor operation parameters Data Information

11.13 Menu 14: User PID controller


Figure 11-21 Menu 14 Logic diagram - Independant controllers



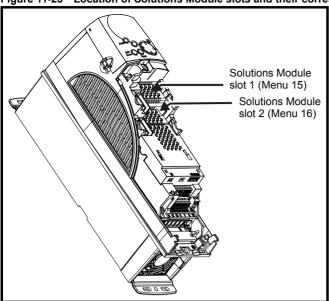

The parameters are all shown at their default settings

Safety Product Mechanical Electrical Getting Basic Running SMARTCARD Advanced **UL** Listing PC tools Optimization Diagnostics Information Information Installation Installation Started parameters the motor operation parameters Data Information

Figure 11-22 Menu 14 Logic diagram - Combined control

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation		parameters	Data	Diagnostics	Information

	B	Ra	ange(‡)	Defau	ılt(⇨)			-			
	Parameter	OL	RFC	OL	RFC	1		Ту	pe		
14.01	PID 1 control output	±1	00.00 %			RO	Bi		NC	PT	
14.02	PID 1 main reference source	Pr 0 .	00 to 50.99	Pr (0.00	RW	Uni			PT	US
14.03	PID 1 reference source	Pr 0 .	00 to 50.99	Pr (0.00	RW	Uni			PT	US
14.04	PID 1 feedback source	Pr 0 .	00 to 50.99	Pr (0.00	RW	Uni			PT	US
14.05	PID 1 reference invert	OFF	(0) or On (1)	OFF	(0)	RW	Bit				US
14.06	PID 1 feedback invert	OFF	(0) or On (1)	OFF	(0)	RW	Bit				US
14.07	PID 1 reference slew-rate limit	0.0 t	o 3,200.0 s	0.		RW	Uni				US
14.08	PID 1 enable		(0) or On (1)	OFF	. ,	RW	Bit				US
14.09	PID 1 optional enable source	Pr 0 .	00 to 50.99	Pr 1	0.01	RW	Uni			PT	US
14.10	PID 1 proportional gain		00 to 4.000	1.0	000	RW	Uni				US
14.11	PID 1 integral gain		00 to 4.000	0.5		RW	Uni				US
14.12	PID 1 derivative gain	0.00	00 to 4.000	0.0	000	RW	Uni				US
14.13	PID 1 output upper limit	0.00	to 100.00 %	100	0.00	RW	Uni				US
14.14	PID 1 output lower limit	±1	00.00 %	-100	0.00	RW	Bi				US
14.15	PID 1 output scaling		00 to 4.000	1.0		RW	Uni				US
14.16	PID 1 output destination		00 to 50.99		0.00	RW	1	DE		PT	US
14.17	PID 1 hold integrator enable		(0) or On (1)	OFF	. ,	RW	Bit		NC		US
14.18	PID 1 symmetrical limit enable		(0) or On (1)	OFF	(0)	RW	Bit				US
14.19	PID 1 main reference		00.00 %			RO	Bi		NC	PT	
14.20	PID 1 reference		00.00 %			RO	Bi		NC	PT	
14.21	PID 1 feedback		00.00 %			RO	Bi		NC	PT	
14.22	PID 1 error		00.00 %			RO	Bi		NC	PT	
14.23	PID 1 reference scaling		00 to 4.000	1.0		RW	Uni				US
14.24	PID 1 feedback scaling		00 to 4.000		000	RW	Uni				US
14.25	PID 1 digital reference		00.00 %	0.0		RW	Bi		NC		
14.26	PID 1 digital feedback		00.00 %	0.0		RW	Bi		NC		
14.27	PID 1 optional enable source parameter 2		0 to 50.99	0.0		RW	Uni			PT	
14.28	PID 1 pre-sleep boost level		to 100.00 %	0.0		RW	Uni				US
14.29	Maximum boost time		to 250.0 s	0.	.0	RW	Uni				US
14.30	PID 1 pre-sleep boost level enable		(0) or On (1)			RO	Bit		NC	PT	US
14.31	PID 2 output		00.00 %			RO	Bi		NC	PT	
14.33	PID 2 reference source		00 to 50.99		0.00	RW	Uni			PT	US
14.34	PID 2 feedback source		00 to 50.99		0.00	RW	Uni			PT	US
14.35	PID 2 reference invert		(0) or On (1)	OFF	` '	RW	Bit				US
14.36	PID 2 feedback invert		(0) or On (1)	OFF	` '	RW	Bit				US
14.37	PID 2 reference slew-rate limit	0.0 t	o 3,200.0 s	0.		RW	Uni				US
14.38	PID 2 enable		0 to 2	-)	RW	Uni				US
14.40	PID 2 proportional gain		00 to 4.000		000	RW	Uni				US
14.41	PID 2 integral gain		00 to 4.000	0.5		RW	Uni				US
14.42	PID 2 derivative gain		00 to 4.000	0.0		RW	Uni				US
	PID 2 output upper limit		to 100.00 %	100		RW	Uni				US
	PID 2 output lower limit		00.00 %	-100		RW					US
	PID 2 output scaling		00 to 4.000		000		Uni			-	US
	PID 2 output destination		00 to 50.99		0.00		Uni	DΕ	NIO	PT	
14.47	PID 2 hold integrator enable		(0) or On (1)	OFF		RW	Bit		NC		US
14.48	PID 2 symmetrical limit enable		(0) or On (1)	OFF	- (U)	RW	Bit		NIO	DT	US
14.50	PID 2 reference		00.00 %			RO	Bi		NC		
14.51	PID 2 feedback		00.00 %			RO	Bi		NC	PT	<u> </u>
14.52	PID 2 reference applies		00.00 %	4.0	200	RO	Bi		NC	ы	110
14.53	PID 2 reference scaling		00 to 4.000		000	RW	Uni				US
14.54	PID 2 digital reference		00 to 4.000		000	RW	Uni		NIO		US
14.55	PID 2 digital reference		00.00 %		00	RW	Bi		NC		<u> </u>
14.56	PID 2 digital feedback		00.00 %		00	RW	Bi		NC		LIC
14.58	Square root scaling	0.0	0 to 4.000	0.0		RW		<u> </u>			US
14.59	PID mode selector		0 to 7)	KVV	Uni	l	1		US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

178 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC 10015	parameters	Data	Diagnostics	Information

11.14 Menus 15 and 16: Solutions Module set-up

Figure 11-23 Location of Solutions Module slots and their corresponding menu numbers

11.14.1 Parameters common to all categories

	Parameter	Range(‡)	Default(⇔)			Тур	эе		
x.01	Solutions Module ID	0 to 599		RO	Uni			PT	US
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT	
x.50	Solutions Module error status	0 to 255		RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT	

The Solutions Module ID indicates the type of module that is installed in the corresponding slot.

Solutions Module ID	Module	Category
0	No module installed	
201	SM-I/O Plus	
204	SM-I/O PELV	
205	SM-I/O 24V Protected	Automotion (I/O
206	SM-I/O 120V	Automation (I/O Expansion)
207	SM-I/O Lite	Expansion)
208	SM-I/O 32	
401	SM-LON	
403	SM-PROFIBUS-DP	
404	SM-INTERBUS	
407	SM-DeviceNet	Fieldbus
410	SM-Ethernet	i iciabus

Solutions Module software

Most Solutions Modules contain software. The software version of the module can be checked by looking at Pr x.02 and Pr x.51.

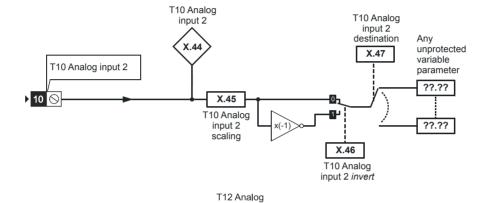
The software version takes the form of zz.yy.xx, where Pr x.02 displays zz.yy and Pr x.51 displays xx. I.e. for software version 01.01.00, Pr x.02 would display 1.01 and Pr x.51 would display 0

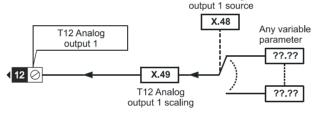
SM-I/O Plus modules do not contain any software, so Pr x.02 and Pr x.51 do not appear.

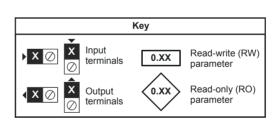
For further information, refer to the specific Solutions Module User Guide.

Getting Started Running the motor Safety Product Mechanical Electrical SMARTCARD Advanced **UL** Listing Optimization PC tools Diagnostics Installation Information Information Data Information Installation parameters operation parameters

11.14.2 **Automation module category**

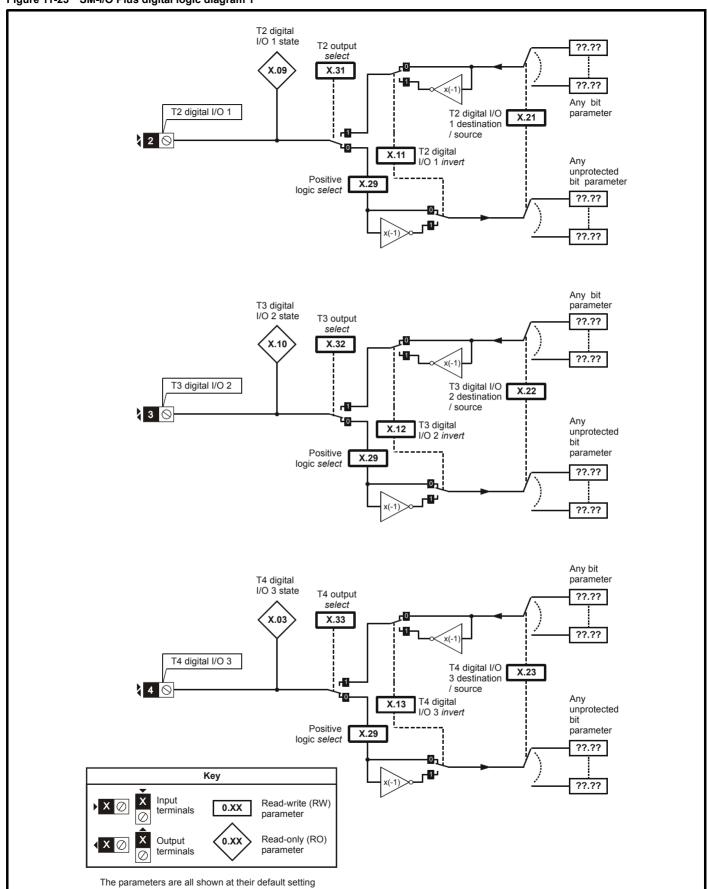

Figure 11-24 SM-I/O Plus analog logic diagram T9 Analog T9 Analog input 1 input 1 destination Any X.40 unprotected X.43 variable T9 Analog input 1 parameter ??.?? X.41 ▶ 9 🛇 T9 Analog


x(-1)


X.42 T9 Analog input 1 invert

input 1

scaling



??.??

The parameters are all shown at their default settings

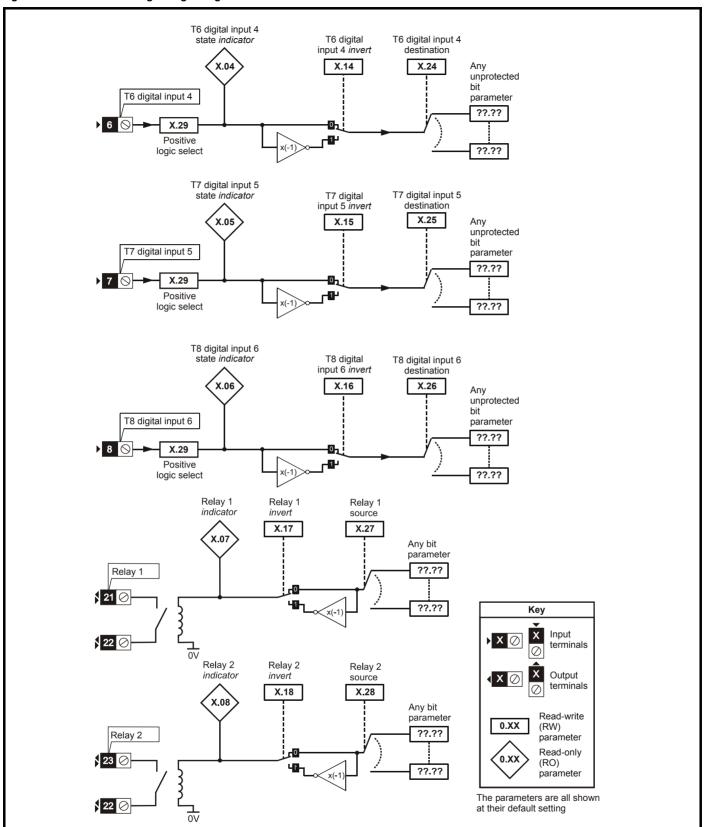

Advanced parameters Safety Product Mechanical Electrical Getting Running SMARTCARD **UL** Listing PC tools Optimization Diagnostics Information Installation Started the motor Data Information Information Installation parameters operation

Figure 11-25 SM-I/O Plus digital logic diagram 1

Getting Started Safety Product Mechanical Electrical Basic Running SMARTCARD Advanced **UL** Listing Optimization PC tools Diagnostics Information Information the motor Information Installation Installation parameters operation parameters Data

Figure 11-26 SM-I/O Plus digital logic diagram 2

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Informatio	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC tools	parameters	Data	Diagnostics	Information

SM-I/O Plus parameters

	Parameter	Range(≎)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID	0 to 599	201	RO	Uni			PT	US
x.03	T4 digital I/O 3 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.04	T6 digital input 4 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.05	T7 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.06	T8 digital input 6 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.07	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.08	Relay 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.09	T2 digital I/O 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.10	T3 digital I/O 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.11	T2 digital I/O 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.12	T3 digital I/O 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.13	T4 digital I/O 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.14	T6 digital input 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.15	T7 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.16	T8 digital input 6 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.17	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.18	Relay 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.20	Digital I/O read word	0 to 511		RO	Uni		NC	PT	
x.21	T2 digital I/O 1 source/ destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.22	T3 digital I/O 2 source/ destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.23	T4 digital I/O 3 source/ destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.24	T6 digital input 4 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.25	T7 digital input 5 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.26	T8 digital input 6 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.27	Relay 1 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US
x.28	Relay 2 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US
x.29	Input polarity select	OFF (0) or On (1)	On (1) (positive logic)	RW	Bit			PT	US
x.31	T2 digital I/O 1 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.32	T3 digital I/O 2 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.33	T4 digital I/O 3 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.40	Analog input 1	±100.0%		RO	Bi		NC	PT	
x.41	Analog input 1 scaling	0 to 4.000	1.000	RW	Uni			\Box	US
x.42	Analog input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.43	Analog input 1 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		РΤ	US
x.44	Analog input 2	±100.0%		RO	Bi		NC	PT	
x.45	Analog input 2 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.46	Analog input 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.47	Analog input 2 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		РТ	US
x.48	Analog output 1 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni				US
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni			\vdash	US
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	РΤ	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

^{*}See trip SLX.Er, Automation (I/O Expansion) module category on page 242.

Electrical Getting Installation Started Running the motor Advanced parameters Technical Data UL Listing Information Safety Product Mechanical Basic SMARTCARD Optimization PC tools Diagnostics Information Information Installation parameters operation Figure 11-27 SM-I/O Lite digital I/O logic diagram Destination Invert x.24 T5 digital input 1 x.14 State 0.00 x.04 unprotected parameter 50.99 Destination Invert x.25 T6 digital input 2 x.15 State 0.00 Any unprotected x.05 parameter 50.99 Destination Invert x.26 T7 digital input 3 x.16 State 0.00 Any ▶ 7 ⊘ x.06 unprotected parameter 50.99 Relay source x.27 Invert x.17 0.00 State Default source

Pr 0.00

21.51

x.07

Key

The parameters are all shown at their default settings

Input

terminals

Output

terminals

X

_ 이V

0.XX

0.XX

Read-write (RW)

Read-only (RO)

parameter

parameter

Figure 11-28 SM-I/O Lite analog I/O logic diagram Destination Invert x.43 T2 Analog Input 1 x.42 Level Scaling Mode 0.00 2 🕖 x.38 x.40 x.41 Default destination Current Pr **0.00** mode and 50.99 protection x.03 200R Current loop loss indicator 0V Source x.48 Voltage 0.00 Scaling Default or current **⊘** 3 ▶ x.49 source Pr 0.00 x.39 Mode 21.51 Key Input terminals Read-write (RW) 0.XX parameter Read-only (RO) Output 0.XX parameter terminals

The parameters are all shown at their default settings

Safety	Product	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD		Advanced	Technical		UL Listina
	Information	Installation			parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

SM--I/O Lite parameters

	Barrara 4 a a	5 (A)	5 (11/4)			-				SM	I-I/O
	Parameter	Range(û)	Default(➪)			Ту	pe			Lite	Timer
x.01	Solutions Module ID	0 to 599	SM-I/O Lite: 207	RO	Uni			PT	US	✓	✓
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT		✓	✓
x.03	Current loop loss indicator	OFF (0) or On (1)		RO	Bit		NC	PT		✓	✓
x.04	T5 digital input 4 state	OFF (0) or On (1)		RO	Bit		NC	PT		✓	✓
x.05	T6 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT		✓	✓
x.06	T7 digital input 6 state	OFF (0) or On (1)		RO	Bit		NC	PT		✓	✓
x.07	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT		✓	✓
x.14	T5 digital input 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	✓	✓
x.15	T6 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	✓	✓
x.16	T7 digital input 6 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	✓	✓
x.17	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	✓	✓
x.20	Digital I/O read word	0 to 255		RO	Uni		NC	PT		✓	✓
x.24	T5 digital input 4 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US	✓	✓
x.25	T6 digital input 5 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US	✓	✓
x.26	T7 digital input 6 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US	✓	✓
x.27	Relay 1 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US	✓	✓
x.38	Analog input 1 mode	0-20 (0), 20-0 (1), 4-20.tr (2), 20-4.tr (3), 4-20 (4), 20-4 (5), VOLt(6)	0-20 (0)	RW	Txt				US	√	✓
x.39	Analog output mode	0-20 (0), 20-0 (1), 4-20 (2), 20-4 (3), VOLt (4)	0-20 (0)	RW	Txt				US	✓	✓
x.40	Analog input 1	±100.0%		RO	Bi		NC	PT		✓	✓
x.41	Analog input 1 scaling	0 to 4.000	1.000	RW	Uni				US	✓	✓
x.42	Analog input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	✓	✓
x.43	Analog input 1 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US	✓	✓
x.48	Analog output 1 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US	✓	✓
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni				US	✓	✓
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC			✓	✓
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT		✓	✓

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

^{*}See trip SLX.Er, Automation (I/O Expansion) module category on page 242.

Safety Product Mechanical Electrical Getting Basic Running SMARTCARD Advanced **UL** Listing PC tools Diagnostics Optimization Information parameters Information Installation Installation Started parameters the motor operation Data Information

Figure 11-29 SM-I/O PELV digital I/O logic diagram T3 digital I/O 1 state T3 digital I/O 1 output select ??.?? X.09 X.31 ??.?? Any bit or T3 digital I/O 1 T3 digital I/O integer X.21 1 source/ parameter destination 3 ⊗ T3 digital I/O 1 invert X.11 Any unprotected bit parameter ??.?? æ ??.?? T4 digital I/O 2 state T4 digital I/O ??.?? 2 output select X.10 X.32 ??.?? Any bit or T4 digital I/O 2 T4 digital I/O integer X.22 2 source/ parameter destination 4 🛇 0 T4 digital I/O 2 invert X.12 Any unprotected bit parameter ??.?? ??.?? T5 digital I/O 3 state T5 digital I/O 3 output select ??.?? X.03 X.33 ??.?? Any bit or T5 digital I/O 3 integer T5 digital I/O X.23 parameter 3 source/ ď 4 5 ⊗ destination X.13 T5 digital I/O 3 invert Any unprotected bit parameter ??.?? -0x(-1) ??.?? T6 digital I/O 4 state T6 digital I/O ??.?? 4 output select X.04 X.29 ??.?? Any bit or T6 digital I/O 4 integer parameter T6 digital I/O X.24 4 source/ destination **∤** 6 ⊗ 40 X.14 T6 digital I/O 4 invert Any unprotected bit parameter ??.?? Key ??.?? Input Read-write (RW) parameter ▶ X Ø 0.XX terminals Read-only (RO) Output 0.XX terminals

The parameters are all shown at their default setting

Figure 11-30 SM-I/O PELV digital input logic diagram

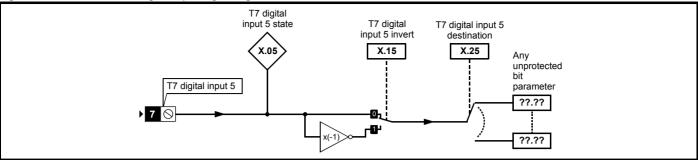
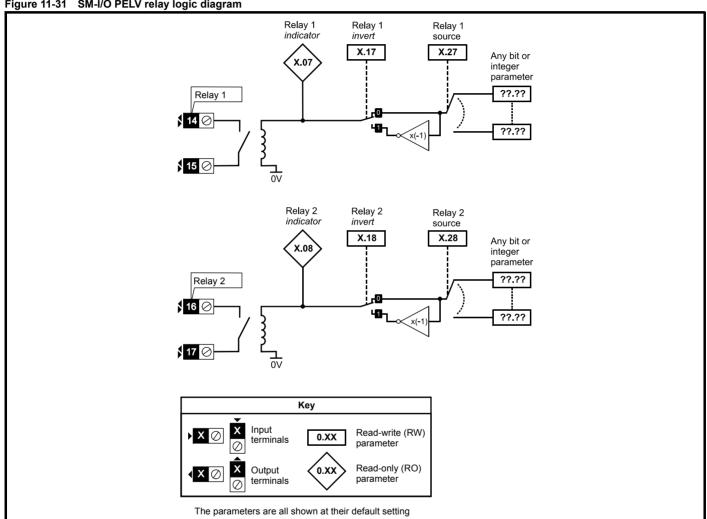
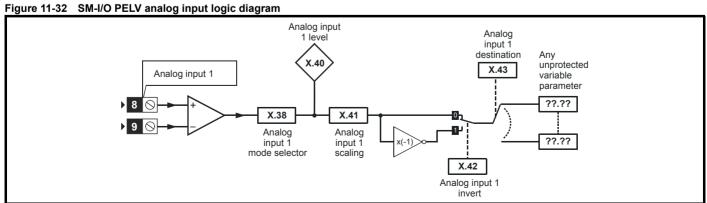
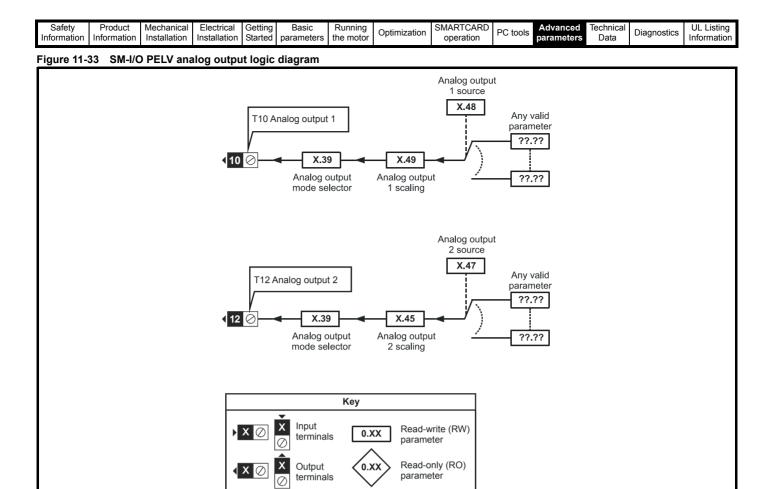
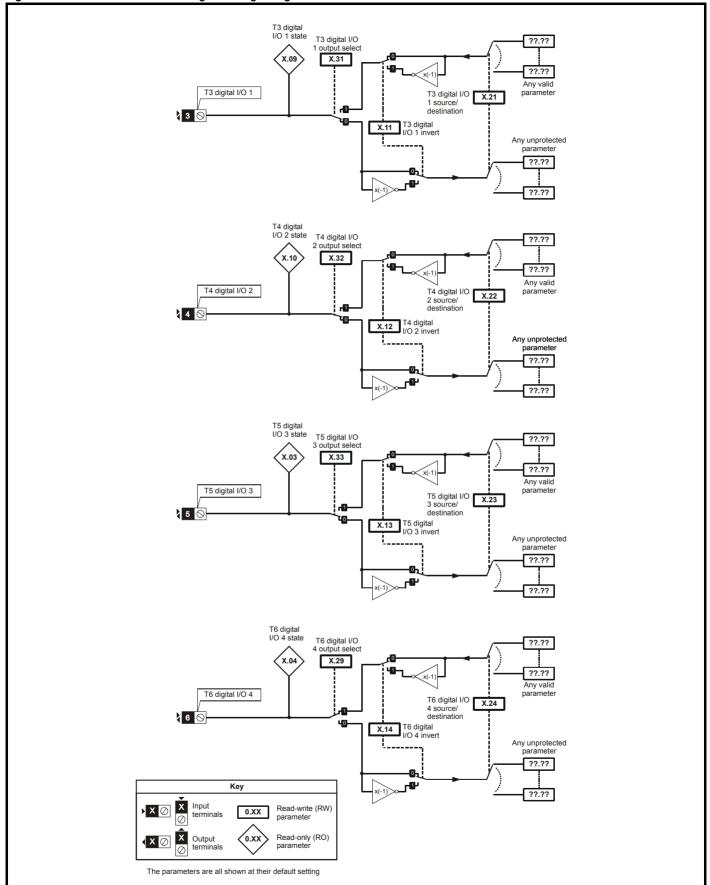





Figure 11-31 SM-I/O PELV relay logic diagram

The parameters are all shown at their default settings

Safety	Product	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD		Advanced	Technical		UL Listina
Calcty	1 100000	Wiconamoai	Licotilloai	Cotting	Daoio	i tarii iii ig	Optimization	CIVIALLICALLE	DC tools	Advanced	recininear	Diagnostics	OL Libing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information
IIIIOIIIIalioii	IIIIOIIIIatioii	IIIStaliation	IIIStaliation	Starteu	parameters	tile illotoi		operation		parameters	Data		IIIIOIIIIatioii


SM-I/O PELV parameters

	Parameter	Range(≎)	Default(⇨)			Ту	ре		
x.01	Solutions Module ID	0 to 599	204	RO	Uni			PT	US
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT	
x.03	T5 digital I/O 3 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.04	T6 digital I/O 4 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.05	T7 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.07	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.08	Relay 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.09	T3 digital I/O 1 state	OFF (0) or On (1)		RO	Bit		NC		
x.10	T4 digital I/O 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.11	T3 digital I/O 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.12	T4 digital I/O 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.13	T5 digital I/O 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.14	T6 digital I/O 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.15	T7 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.16	Disable PELV User power supply absent trip	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.17	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.18	Relay 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.19	Freeze flag	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.20	Digital I/O read word	0 to 255		RO	Uni		NC	PT	
x.21	T3 digital I/O 1 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US
x.22	T4 digital I/O 2 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.23	T5 digital I/O 3 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US
x.24	T6 digital I/O 4 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni				US
x.25	T7 digital input 5 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.27	Relay 1 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US
x.28	Relay 2 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US
x.29	T6 digital I/O 4 output select	OFF (0) or On (1)	On (1)	RW	Bit				US
x.31	T3 digital I/O 1 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.32	T4 digital I/O 2 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.33	T5 digital I/O 3 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.38	Analog input 1 mode	0-20 (0), 20-0 (1), 4-20.tr (2), 20-4.tr (3), 4-20 (4), 20-4 (5)	0-20 (0)	RW	Txt				US
x.39	Analog output mode	0-20 (0), 20-0 (1), 4-20 (2), 20-4 (3)	0-20 (0)	RW	Txt				US
x.40	Analog input 1 level	0.0 to 100.0%		RO	Bi		NC	PT	
x.41	Analog input 1 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.42	Analog input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.43	Analog input 1 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	-	DE		PT	US
x.45	Analog output 2 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.47	Analog output 2 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US
x.48	Analog output 1 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC		
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

^{*}See trip SLX.Er, Automation (I/O Expansion) module category on page 242.

Safety Product Mechanical Electrical Getting Running SMARTCARD Advanced **UL** Listing PC tools Diagnostics Optimization Information parameters Data Information Installation Installation Started parameters the motor operation Information Figure 11-34 SM-I/O 24V Protected digital I/O logic diagram T3 digital I/O 1 state T3 digital I/O 1 output select ??.?? X.09 X.31

Getting Started Safety Product Mechanical Electrical Basic Running SMARTCARD Advanced **UL** Listing PC tools Diagnostics Optimization Information the motor Data Information Information Installation Installation parameters operation parameters

Figure 11-35 SM-I/O 24V Protected digital I/O logic diagram

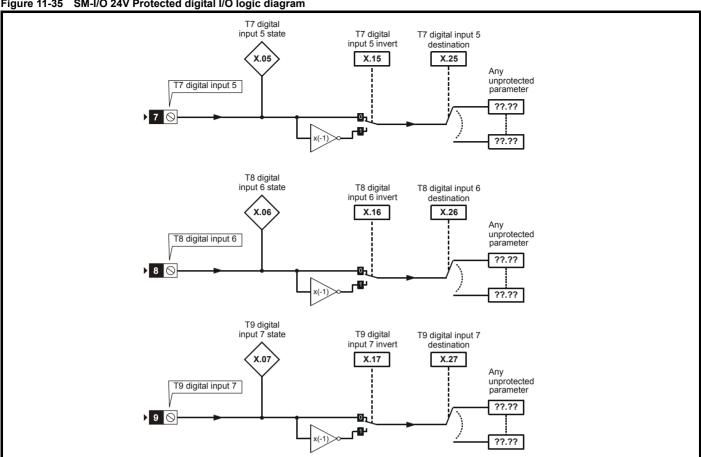
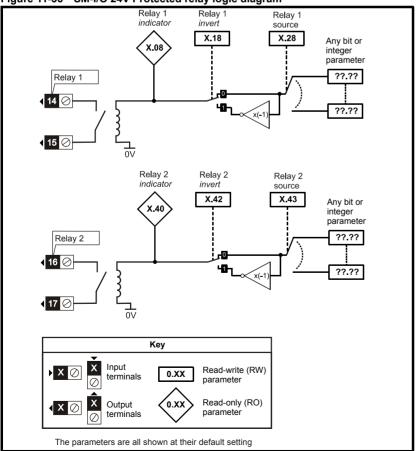
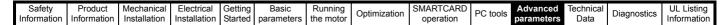
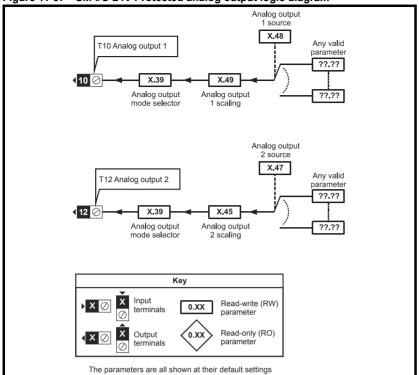
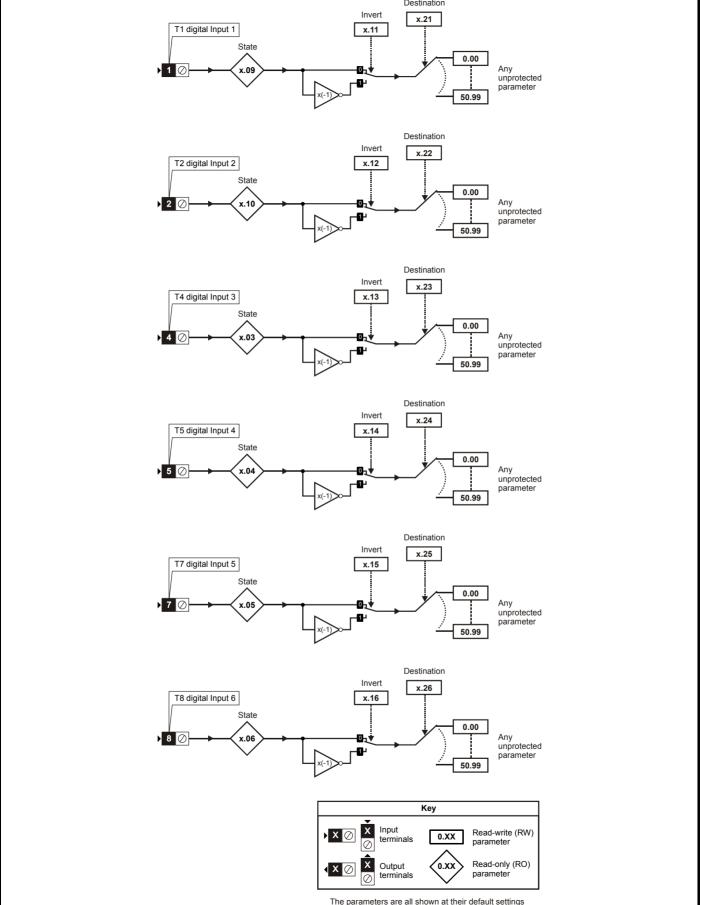
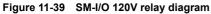
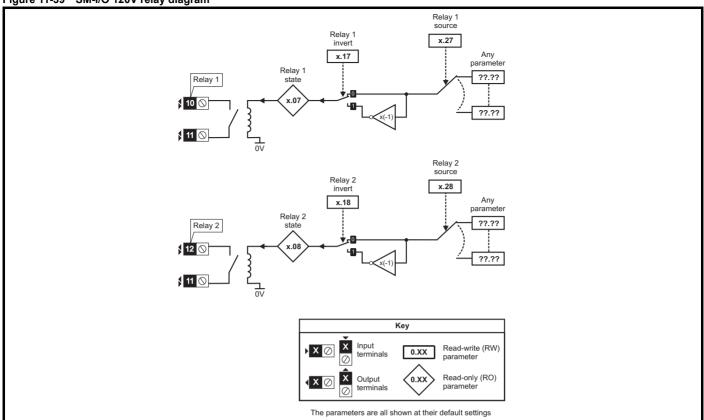



Figure 11-36 SM-I/O 24V Protected relay logic diagram


Figure 11-37 SM-I/O 24V Protected analog output logic diagram

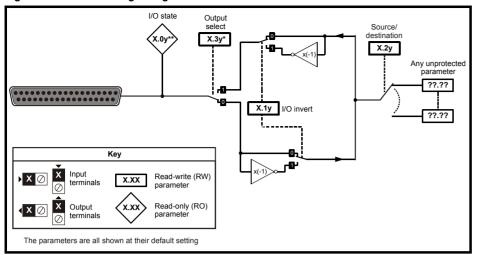



SM-I/O 24V Protected parameters

	Parameter	Range(ŷ)	Default(⇒)			Ту	ре		
x.01 Solution	ns Module ID	0 to 599	205	RO	Uni			РΙ	US
x.02 Solution	ns Module Main Software Version	0.00 to 99.99		RO	Uni		NC	PT	
x.03 T5 digit	tal I/O 3 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.04 T6 digit	tal I/O 4 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.05 T7 digit	tal input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.06 T8 digit	tal input 6 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.07 T9 digit	tal input 7 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.08 Relay 1	state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.09 T3 digit	tal I/O 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.10 T4 digit	tal I/O 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.11 T3 digit	tal I/O 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.12 T4 digit	tal I/O 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.13 T5 digit	tal I/O 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.14 T6 digit	tal I/O 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.15 T7 digit	al input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.16 T8 digit	al input 6 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.17 T9 digit	al input 7 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.18 Relay 1	invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.20 Digital	I/O read word	0 to 255		RO	Uni		NC	PT	
x.21 T3 digit	tal I/O 1 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE			US
x.22 T4 digit	tal I/O 2 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE			US
	al I/O 3 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE			US
x.24 T6 digit	al I/O 4 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE			US
x.25 T7 digit	al input 5 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE			US
x.26 T8 digit	al input 6 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE			US
x.27 T9 digit	al input 7 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE			US
	source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni				US
x.29 T6 digit	tal I/O 4 output select	OFF (0) or On (1)	On (1)	RW	Bit				US
	tal I/O 1 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.32 T4 digit	tal I/O 2 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
	tal I/O 3 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.39 Analog	output mode	0-20, 20-0, 4-20, 20-4	0-20	RW	Uni				US
x.40 Relay 2	2 state	0.0 or 100.0 %		RO	Bit		NC	PT	
x.42 Relay 2		OFF (0) or On (1)	OFF (0)	RW	Bit				US
	2 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni				US
	output 2 scaling	0.000 to 4.000	1.000	RW	Uni				US
	output 2 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni				US
	output 1 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni				US
	output 1 scaling	0.000 to 4.000	1.000	RW	Uni				US
	ns Module error status	0 to 255		RO	Uni	Ì	NC	PT	
x.51 Solution	s Module software sub-version	0 to 99		RO	Uni		NC	PT	

Electrical Getting Installation Started Running the motor Technical Data Safety Product Mechanical Basic SMARTCARD Advanced **UL** Listing Optimization PC tools Diagnostics Information Information parameters Information Installation parameters operation Figure 11-38 SM-I/O 120V digital input logic diagram Destination Invert x.21 T1 digital Input 1 x.11

SM-I/O 120V parameters


	Parameter	Range(३)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID	0 to 599	206	RO	Uni			PT	US
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT	
x.03	T4 digital input 3 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.04	T5 digital input 4 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.05	T7 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.06	T8 digital input 6 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.07	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.08	Relay 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.09	T1 digital input 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.10	T2 digital input 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.11	T1 digital input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.12	T2 digital input 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.13	T4 digital input 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.14	T5 digital input 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.15	T7 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.16	T8 digital input 6 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.17	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.18	Relay 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.20	Digital I/O read word	0 to 255		RO	Uni		NC	PT	
x.21	T1 digital input 1 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.22	T2 digital input 2 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.23	T4 digital input 3 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.24	T5 digital input 4 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.25	T7 digital input 5 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.26	T8 digital input 6 destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.27	Relay 1 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	US
x.28	Relay 2 source	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	U
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT	

I	RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
	FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

^{*}See trip SLX.Er, Automation (I/O Expansion) module category on page 242.

Figure 11-7 SM-I/O 32 logic diagram

SM-I/O 32 parameters

	Parameter	Range(≎)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID code	0 to 599	208	RO	Uni			PT	US
x.02	Solutions Module main software version	0.00 to 99.99	99.00	RO	Uni		NC	PT	
x.03	Digital I/O 3 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.04	Digital I/O 4 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.05	Digital I/O 5 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.06	Digital I/O 6 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.07	Digital I/O 7 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.08	Digital I/O 8 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.09	Digital I/O 1 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.10	Digital I/O 2 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.11	Digital I/O 1 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.12	Digital I/O 2 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.13	Digital I/O 3 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.14	Digital I/O 4 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.15	Digital I/O 5 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				U:
x.16	Digital I/O 6 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				U
x.17	Digital I/O 7 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				U
x.18	Digital I/O 8 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				U:
x.20	Digital I/O read word	0 to 255	0	RO	Uni		NC	PT	
x.21	Digital I/O 1 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	U
x.22	Digital I/O 2 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	U
x.23	Digital I/O 3 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	U
x.24	Digital I/O 4 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	U:
x.25	Digital I/O 5 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.26	Digital I/O 6 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.27	Digital I/O 7 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.28	Digital I/O 8 source/destination	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	US
x.29	Digital I/O 4 output select	OFF(0) or On(1)	On(1)	RW	Bit			PT	U:
x.31	Digital I/O 1 output select	OFF(0) or On(1)	OFF (0)	RW	Bit				U:
x.32	Digital I/O 2 output select	OFF(0) or On(1)	OFF (0)	RW	Bit				U
x.33	Digital I/O 3 output select	OFF(0) or On(1)	OFF (0)	RW	Bit				U
x.43	First update method direction register	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	U
x.47	Fast update method read register	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni	DE		PT	U
x.48	Fast update method write register	Pr 0.00 to Pr 50.99	Pr 0.00	RW	Uni			PT	U:
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT	

I	RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
I	FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

^{*}See trip SLX.Er, Automation (I/O Expansion) module category on page 242.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

11.14.3 Fieldbus module category Fieldbus module parameters

	Parameter	Range(û)	Default(⇒)			Туј	ре		
x.01	Solutions Module ID	0 to 599		RO	Uni			PT	US
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT	
x.03	Fieldbus Node Address	65,535	65,535	RW	Uni				US
x.04	Fieldbus Baud Rate	-128 to +127	0	RW	Bi				US
x.05	Mode	65,535	4	RW	Uni				US
x.06	Fieldbus Diagnostic	±9,999		RO	Bi		NC	PT	
x.07	Trip Delay Time	0 to 3,000	200	RW	Uni				US
x.08	Little endianism select	OFF (0) or On (1)	On (1)	RW	Bit				US
x.09	Register control	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.10 to x.19	'I' data registers 0 - 9	-32,768 to +32,767		RW	Bi				
x.20 to x.29	'O' data registers 0 - 9	-32,768 to +32,767		RW	Bi				
x.30	Load Solutions Module defaults	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.31	Save Solutions Module parameters	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.32	Request to reinitialise	OFF (0) or On (1)	OFF (0)	RW	Bit				
x.33	Download from Fieldbus Solutions Module	OFF (0) or On (1)	OFF (0)	RW	Bit				
x.34	Compression	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.35	Serial number	-2,147,483,648 to 2,147,483,647		RO	Bi		NC	PT	
x.36 to x.37	Fieldbus specific	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.38	Fieldbus specific defined mode	0 to 255	0	RW	Uni				US
x.39	Cyclic input configuration	0 to 255	0	RW	Uni				US
x.40	Cyclic output configuration	0 to 255	0	RW	Uni				US
x.41 to x.43	Fieldbus specific	0 to 255	0	RW	Uni				US
x.44 to x.48	Fieldbus specific	0 to 255	0	RO	Uni			РТ	
x.49	Mapping error status	0 to 255	0	RO	Uni			PT	
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

^{*}See trip SLX.Er, Fieldbus module category on page 242.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

SM-LON parameters

	Parameter	Range(≎)	Default(⇨)			Ту	pe		
x.01	Solutions Module ID	0 to 599	401	RO	Uni			PT	US
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT	
x.03	Node ID	0 to 127	0	RW	Uni				
x.06	Option module diagnostic information	-9999 to 9999	0	RW	Uni				
x.07	Network loss trip	0 to 1	0	RW	Uni				
x.10	Subnet ID	0 to 255	0	RW	Uni				
x.11	Domain ID length	0 to 6	0	RW	Uni				
x.12	Domain ID byte 1	0 to 255	0	RW	Uni				
x.13	Domain ID byte 2	0 to 255	0	RW	Uni				
x.14	Domain ID byte 3	0 to 255	0	RW	Uni				
x.15	Domain ID byte 4	0 to 255	0	RW	Uni				
x.16	Domain ID byte 5	0 to 255	0	RW	Uni				
x.17	Domain ID byte 6	0 to 255	0	RW	Uni				
x.30	Load Option Defaults	Off (0) or On (1)	Off (0)	RW	Bit				
x.31	Save option parameters	Off (0) or On (1)	Off (0)	RW	Bit				
x.32	Request to re-initialise	Off (0) or On (1)	Off (0)	RW	Bit				
x.33	Restore parameters from option module	Off (0) or On (1)	Off (0)	RW	Bit				
x.34	Initialise drive reference selectors	Off (0) or On (1)	Off (0)	RW	Bit				
x.35	Option module serial number	-2147483648 to 2147483647		RO	Bi		NC	PT	
x.36	Transmit service pin message	Off (0) or On (1)	Off (0)	RW	Bit				
x.37	Wink active	Off (0) or On (1)	Off (0)	RW	Bit				
x.38	Unconfigure option module	0 to 1	0	RW	Uni				
x.39	Default configuration property storage	0 to 1	0	RW	Uni				
x.50	Module error status	0 to 255		RO	Uni		NC	PT	
x.51	Module software sub-version	0 to 99		RO	Uni		NC	PT	

R	V Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
F	I Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

198 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC 10015	parameters	Data	Diagnostics	Information

Menu 17: Building Automation Network 11.15

	Parameter	Range(ŷ)	Default(⇔)			Тур	е		٦
17.01	ID code	0 to 599	402	RO	Uni		I	PT US	3
17.02	Software version	0.00 to 99.99		RO	Uni	1	NC I	PT	
17.03	MAC/Node address	0 to 65535	1	RW	Uni			US	3
17.04	Baud rate	0 to 127	0	RW	Uni			US	3
17.05	Building Automation Network protocol	0 to 65535	0	RW	Uni			US	3
17.06	Received message counter	0 to 9999		RO	Uni	1	NC I	PT	
17.07	MS/TP maximum master MAC address	0 to 3000	127	RW	Uni			US	3
17.10	Device object identifier	32767 to -32768	0	RW	Bi			US	3
17.35	CRC errors	0 to 2 ³¹ -1		RO	Uni	1	NC I	PT	
17.38	Data format	0 to 255	0	RW	Uni			US	3
17.39	Response turn-around time	0 to 255 ms	5	RW	Uni	1	NC		٦
17.44	Real-time clock (RTC) back-up battery low	0 to 255	0	RO	Uni	1	NC I	PT	1
17.50	Building Automation Network error status	0 to 255		RO	Uni	1	NC I	PT	
17.51	Module software sub-version	0 to 99		RO	Uni	1	NC I	PT	

11.16 Menu 18: Application menu 1

	Parameter	Range(ℚ)	Default(⇨)			Ту	ре		
	Application menu 1 power-down saved integer	-32,768 to +32,767	0	RW	Bi		NC		PS
18.02 to 18.10	Application menu 1 read-only integer	-32,768 to +32,767	0	RO	Bi		NC		
18.11 to 18.30	Application menu 1 read-write integer	-32,768 to +32,767	0	RW	Bi				US
18.31 to 18.50	Application menu 1 read-write bit	OFF (0) or On (1)	0	RW	Bit			ļ	US

Menu 19: Application menu 2 11.17

	Parameter	Range(‡)	Default(⇒)			Ту	ре		
19.01	Application menu 2 power-down saved integer	-32,768 to +32,767	0	RW	Bi		NC		PS
19.02 to 19.10	Application menu 2 read-only integer	-32,768 to +32,767	0	RO	Bi		NC		
19.11 to 19.30	Application menu 2 read-write integer	-32,768 to +32,767	0	RW	Bi			1	US
19.31 to 19.50	Application menu 2 read-write bit	OFF (0) or On (1)	0	RW	Bit			ı	us

11.18 Menu 20: Application menu 3

	Parameter	Range(‡)	Default(⇨)			Тур	Эе	
20.01 to 20.20	Application menu 3 read-write integer	-32,768 to +32,767	0	RW	Bi		NC	
	Application menu 3 read-write long integer	-2 ³¹ to 2 ³¹ -1	0	RW	Bi		NC	

All menu 20 parameters are transferred to the SMARTCARD when a 4yyy transfer is performed. See section 9.2.1 Writing to the SMARTCARD on page 120 for more information.

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

199 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor		operation		parameters	Data	g	Information

Menu 21: Second motor parameters 11.19

	Parameter		F	Range(‡)	Defa	ault(⇔)			Tve			
	Parameter		OL	RFC	OL	RFC			Тур	Je		
21.01	Maximum reference clamp	{0.02}*	0 to 3,000.0 Hz	SPEED_LIMIT_MAX rpm	EUR> 50.0 USA> 60.0	EUR> 1,500.0 USA> 1,800.0	RW	Uni				US
21.02	Minimum reference clamp	{0.01}*	±3,000.0 Hz	±SPEED_LIMIT_MAX rpm		0.0	RW	Bi			PT	US
21.03	Reference selector	{0.05}*		A2.Pr (2), Pr (3), PAd (4), Prc (5)	A1	.A2 (0)	RW	Txt				US
21.04	Acceleration rate	{0.03}*	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1000rpm	EUR> 40.0 USA> 33.3	EUR> 13.333 USA 11.111	RW	Uni				US
21.05	Deceleration rate	{0.04}*	0.0 to 3200.0 s/100Hz	0.000 to 3,200.000 s/1000rpm	EUR> 40.0 USA> 33.3	EUR> 13.333 USA 11.111	RW	Uni				US
21.06	Rated frequency	{0.47}*	0 to 3000.0 Hz	0 to 1250.0Hz	US	JR> 50 SA> 60	RW	Uni				US
21.07	Rated current	{0.46}*	0 to RATED	_CURRENT_MAX A	RATED_CL	JRRENT_MAX	RW	Uni		RA		US
21.08	Rated load rpm	{0.45}*	0 to 180,000 rpm	0.00 to 40,000.00 rpm	EUR> 1,500 USA> 1,800	EUR> 1,450.00 USA> 1,770.00	RW	Uni				US
21.09	Rated voltage	{0.44}*	0 to AC_VC					Uni		RA		US
21.10	Rated power factor	{0.43}*	0.000 to 1.000	0.000 to 1.000		0.85	RW	Uni		RA	_	US
21.11	Number of motor poles	{0.42}*	Auto to	120 pole (0 to 60)	Αι	uto (0)	RW	Txt				US
21.12	Stator resistance			i: 0.000 to 65.000 Ω 00 to 65.000 x 10 m Ω		0.0	RW	Uni		RA		US
21.13	Voltage offset		0.0 to 25.0 V		0.0		RW	Uni		RA		US
21.14	Transient inductance (σL _{s)}		0.000	to 500.000mH	C	.000	RW	Uni		RA		US
21.15	Motor 2 active		OFF	(0) or On (1)			RO	Bit		NC	PT	
21.16	Thermal time constant	{0.45}*	0.	0 to 3000.0		89.0	RW	Uni				US
21.17	Speed controller Kp gain	{0.07}*		0.000 to 6.5535 rad s ⁻¹		0.0300	RW	Uni				US
21.18	Speed controller Ki gain	{0.08}*		0.00 to 655.35 s/rad s ⁻¹		0.10	RW	Uni				US
21.19	Speed controller Kd gain	{0.09}*		0.00000 to 0.65535 s ⁻¹ /rad s ⁻¹		0.00000	RW	Uni				US
21.22	Current controller Kp gain	{0.38}*	(20	200V: 75, 400V: 150, 575V: 180, 690V: 215	RW	Uni				US	
21.23	Current controller Ki gain	{0.39}*	(40	200V: 1,000, 400V: 2,000, 575V: 2,400, 690V: 3,000	RW	Uni				US	
21.24	Stator inductance (L _s)		0.00 to 5,000.00 mH			0.00	RW	Uni		RA		US
21.25	Motor saturation breakpoint 1		0 to 100% of rated flux			50	RW	Uni			_	US
21.26	Motor saturation breakpoint 2		0 to 100% of rated flux			75	RW	Uni				US
21.27	Motoring current limit		0 to MOTOR2_CURRENT_LIMIT_MAX %			10.0	RW	Uni		RA		US
21.28	Regen current limit			CURRENT_LIMIT_MAX %		10.0	RW	Uni		RA		US
21.29	Symmetrical current limit	{0.06}*	0 to MOTOR2_0	CURRENT_LIMIT_MAX %	1	10.0	RW	Uni	l T	RA	. 7	US

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

^{*} The menu 0 references are only valid when the second motor map parameters have been made active by setting Pr 11.45 to 1. (The second motor map only becomes effective when the output stage of the drive is not enabled, i.e. inh, rdY, or trip states.)

When the second motor map parameters are active, the symbol 'Mot2' will appear in the lower left hand corner of the LCD display or the decimal point that is second from the right on the first row of the LED display is lit.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing	1
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information	1

Menu 22: Additional Menu 0 set-up 11.20

	Parameter	Ran	ge(û)	Def	ault(⇔)	Туре				
	Farameter	OL	RFC	OL	RFC		1	ype		
22.01	Parameter 0.31 set-up	Pr 1.00	to Pr 50.99	Р	r 11.33	RW	Uni		PT	US
22.02	Parameter 0.32 set-up	Pr 1.00	to Pr 50.99	Р	r 11.32	RW	Uni		PT	US
22.03	Parameter 0.33 set-up	Pr 1.00	to Pr 50.99	F	r 6.09	RW	Uni		PT	US
22.04	Parameter 0.34 set-up	Pr 1.00	to Pr 50.99	Р	r 11.30	RW	Uni		PT	US
22.05	Parameter 0.35 set-up	Pr 1.00	to Pr 50.99	Р	r 11.24	RW	Uni		PT	US
22.06	Parameter 0.36 set-up	Pr 1.00	to Pr 50.99	Р	r 11.25	RW	Uni		PT	US
22.07	Parameter 0.37 set-up	Pr 1.00	to Pr 50.99	Р	r 11.23	RW	Uni		PT	US
22.10	Parameter 0.40 set-up	Pr 1.00	to Pr 50.99	F	r 5.12	RW	Uni		PT	US
22.11	Parameter 0.41 set-up	Pr 1.00	to Pr 50.99	F	r 5.18	RW	Uni		PT	US
22.18	Parameter 0.48 set-up	Pr 1.00	to Pr 50.99	Р	r 11.31	RW	Uni		PT	US
22.20	Parameter 0.50 set-up	Pr 1.00	to Pr 50.99	Р	r 11.29	RW	Uni		PT	US
22.21	Parameter 0.51 set-up	Pr 1.00	to Pr 50.99	F	r 8.29	RW	Uni		PT	US
22.22	Parameter 0.52 set-up	Pr 1.00	to Pr 50.99	F	r 9.35	RW	Uni		PT	US
22.23	Parameter 0.53 set-up	Pr 1.00	to Pr 50.99	F	r 9.36	RW	Uni		PT	US
22.24	Parameter 0.54 set-up	Pr 1.00	to Pr 50.99	F	Pr 9.37	RW	Uni		PT	US
22.25	Parameter 0.55 set-up	Pr 1.00	to Pr 50.99	F	r 9.38	RW	Uni		PT	US
22.26	Parameter 0.56 set-up	Pr 1.00	to Pr 50.99	F	Pr 9.39	RW	Uni		PT	US
22.27	Parameter 0.57 set-up	Pr 1.00	to Pr 50.99	F	r 9.40	RW	Uni		PT	US
22.28	Parameter 0.58 set-up	Pr 1.00	to Pr 50.99	F	r 9.43	RW	Uni		PT	US
22.29	Parameter 0.59 set-up	Pr 1.00	to Pr 50.99	F	r 0.00	RW	Uni		PT	US

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Product Mechanical Electrical Getting Running Advanced **UL** Listing Optimization PC tools Diagnostics Information Started the motor Information Information Installation Installation parameters operation parameters Data

11.21 Advanced features

This section gives information on some of the advanced functions of the drive. For additional information see the Advanced User Guide.

Reference modes	Pr 1.14 , Pr 1.15 and Pr 8.39
Hand / off / auto	Pr 1.52
Fire mode	Pr 1.53 and Pr 1.54
Advanced process PID	Menu 14
Braking modes	Pr 2.04 and Pr 2.08
S ramps	Pr 2.06 and Pr 2.07
Torque modes	Pr 4.08 and Pr 4.11
Stop modes	Pr 6.01 , Pr 6.06 , Pr 6.07 and Pr 6.08
Main loss modes	Pr 6.03 , Pr 6.48 , Pr 4.13 and Pr 4.14
Catch a spinning motor	Pr 6.09 and Pr 5.40
Fast disable	Pr 6.29
Building automation interface	Menu 17

11.21.1 Reference modes

	1.1	4	Refere	ence s	elector					
R۱	RW Txt						NC		US	
Û	\$\hfrac{1}{1} \text{A1.A2 (0), A1.Pr (2), A2.Pr (2)}{\text{Pr (3), PAd (4), Prc (5)}}							A1.A2	(0)	

	1.1	15	Prese	t refere	nce se						
R۱	N	Uni			NC US						
Û	0 to 9					\Diamond			0		

	8.	39	T28 ar	T28 and T29 auto-selection disable								
	RW	Bit								US		
Û	ţ	OF		\Diamond			On (1)				

If Pr 8.39 is set to OFF (0), then the setting of Pr 1.14 automatically changes the operation of digital inputs T28 and T29 by configuring the destination parameters Pr 8.25 and Pr 8.26. To allow Pr 8.25 and Pr 8.26 to be changed manually by the user, the automatic set-up must be disabled by setting Pr 8.39 to 1.

If Pr 8.39 is 0 and Pr 1.14 is changed, then a drive reset is required before the function of terminal T28 or T29 will become active.

Table 11-8 Active reference

Pr 1.14	Pr 1.15	[Digital Input T28	ı	Digital Input T29	Pr 1.49	Pr 1.50	Active Reference
Pr 1.14	Pr 1.15	State	Function	State	Function	Pr 1.49	Pr 1.50	Active Reference
	0 or 1	0	Analog 1/2 select			1	1	Analog input 1
	0 01 1	1	Analog 1/2 select			2	1	Analog input 2
A1.A2 (0)	2 to 8		No function		No function	1 or 2	2 to 8	Preset reference 2 to 8
A1.A2 (0)		0	Analog 1/2 select		NO IUNCUON	1	1	Analog input 1
	9 *	1	Analog 1/2 Select			2	1	Analog input 2
			No function			1 or 2	2 to 8	Preset reference 2 to 8
		0		0			1	Analog input 1
	Pr (1) 0 1 0 1 1 2 to 8 9 *	1	Preset select bit 0	0	Preset select bit 1		2	Preset reference 2
		0	Freset select bit 0	1	Freset select bit i		3	Preset reference 3
A1 Dr (1)		1		'		1	4	Preset reference 4
AI.FI (1)						'	1	Analog input 1
			No function		No function		2 to 8	Preset reference 2 to 8
			NO IUTICIIOTI		No function		1	Analog input 1
	9						2 to 8	Preset reference 2 to 8
		0	0			1	Analog input 2	
	0	1	Preset select bit 0		Preset select bit 1		2	Preset reference 2
	U	0	Treset select bit o	1	i reset select bit i		3	Preset reference 3
A2.Pr (2)		1		'		2	4	Preset reference 4
AZ .F1 (2)	1						1	Analog input 2
	2 to 8		No function		No function		2 to 8	Preset reference 2 to 8
	9 *		NO function		NO Idiliction		1	Analog input 2
	3						2 to 8	Preset reference 2 to 8
		0		0			1	Preset reference 1
	0	1	Preset select bit 0		Preset select bit 1		2	Preset reference 2
Pr (3)	J	0	i reset scient bit 0	1	1 1030t 30loot bit 1	3	3	Preset reference 3
F1 (3)		1		'		3	4	Preset reference 4
	1 to 8		No function		No function		1 to 8	Preset reference 1 to 8
	9 *		INO IUIICIIOII		INO TUTTOUT		1 to 8	Preset reference 1 to 8
PAd (4)			No function		No function	4		Keypad reference
Prc (5)			No function		No function	5		Precision reference

^{*} Setting Pr 1.15 to 9 enables the Preset reference scan timer. With the scan timer enabled analog 1 and preset references 2 to 8 are selected automatically in turn. Pr 1.16 defines the time between each change.

SMARTCARE Advanced Optimization PC tools Diagnostics operation Information Information Installation Installation Started parameters the moto parameters Information

Preset references

Preset references 1 to 8 are contained in Pr 1.21 to Pr 1.28.

Keypad reference

If Keypad reference is selected the drive sequencer is controlled directly by the keypad keys and the keypad reference parameter (Pr 1.17) is selected. The sequencing bits, Pr 6.30 to Pr 6.34, and Pr 6.37 have no effect and jog is disabled.

11.21.2 Hand / Off / Auto

	1.5	2	Enable	e Hand	/ Off /	Au	to k	eypad	operat	ing mo	de
R۱	Ν	Bit								US	
Û			0 to :	3		\Rightarrow			2		

Hand / Off / Auto functions are enabled if Pr 1.52 is set to a non-zero value, otherwise the keypad buttons are allocated as follows:

- Blue Forward/Reverse
- Green 1 Run
- Red 🔘 Reset

When Hand / Off / Auto functions are enabled (Pr 1.52 set to either 1, 2 or 3), then the keypad buttons will be allocated as follows:

- Blue Auto
- Green O Hand
- Red 🗑 Off/Reset

On power-up, Auto mode is selected if Pr 1.52 is set to1, Off mode is selected if Pr 1.52 is set to 2.

If Pr 1.52 is set to 3, then the mode on power-up is determined by the mode on power-down as shown in Table 11-9.

Table 11-9 Power-up modes if Pr 1.52 = 3

Power-down	Power-up
Hand	Off
Off	Off
Auto	Auto

Auto

In Auto mode, the reference for the motor speed/frequency will be selected by the value set in Pr 0.05.

The speed/frequency reference Pr 0.05 is automatically set to keypad reference. The motor speed is determined by the value in the keypad control mode reference Pr 1.17, which can be adjusted by pressing the Up/Down arrows on the keypad.

When Hand is selected from Auto, Pr 1.17 will be set to the value of the Pre-ramp reference (Pr 1.03) on mode transition, so the current motor speed is maintained.

If Hand mode is selected from Off mode, the motor will ramp up to the speed determined by the value in Pr 1.17.

In Off mode, the motor will be stopped. The speed/frequency reference (Pr **0.05**) is automatically set to keypad reference allowing the value in the keypad control mode reference (Pr 1.17) to be modified by pressing the Up/Down arrow keys. If Hand mode is then selected, the motor will ramp up to the speed determined by the value in Pr 1.17.

11.21.3 Fire mode

Fire Mode - important warning.

When Fire Mode is active the motor overload and thermal protection are disabled, as well as a number of drive protection functions. Fire Mode is provided for use only in emergency situations where the safety risk from disabling protection is less than the risk from the drive tripping typically in smoke extraction operation to permit evacuation of a building. The use of Fire Mode itself causes a risk of fire from overloading of the motor or drive, so it must only be used after careful consideration of the balance of risks.

Care must be taken to prevent inadvertent activation or deactivation of Fire Mode. Fire Mode is indicated by a flashing display text warning "Fire mode active".

Care must be taken to ensure that parameters Pr 1.53 or Pr 1.54 are not inadvertently re-allocated to different inputs or variables. It should be noted that, by default, Pr 1.54 is controlled from digital input 4 and changing Pr 6.04 or Pr 8.24 can re-allocate this digital input to another parameter. These parameters are at access level 2 in order to minimise the risk of inadvertent or unauthorised changes. It is recommended that User Security be applied to further reduce the risk (see section 5.10 Parameter access level and security on page 90). These parameters may also be changed via serial communications so adequate precautions should be taken if this functionality is utilised.

1.	53	Fire m	ode re	ferenc	e				
RW	Uni							US	
OL ∩	±SP	EED_F		MAX	Û		0.0 H	Ηz	
RFC		Hz/	rpm		ŕ		0.0 ๆ	pm	
1.	54	Fire m	ode a	ctivatio	n				
RO	Bit						NC	US	

Emergency ventilation or fire mode allows for the purging of air from a structure during a fire. It is enabled if Pr 1.53 is set to a non zero value and activated when Pr 1.54 is set to one. When activated, the pre-ramp reference (Pr 1.03) is set to the value of Pr 1.53 and the normal drive controls are overridden as follows:

- 1. Drive enable is only controlled by the Enable input (Pr 6.15). The control word (Pr 6.43) cannot be used to disable the drive.
- The internal run command is forced to be active. The normal drive sequencing bits (Pr 6.30 to Pr 6.34) and the control word have no effect.
- 3. The limit switch functions (Pr 6.35 and Pr 6.36) have no effect and will not stop the motor.
- 4. The hard speed reference is forced to zero. The hard speed reference should not be used when fire mode is likely to be activated as this will cause an abrupt change of speed.
- 5. The hand/off/auto function is disabled. If this system is in the hand state when fire mode is activated it will be forced to the off state, so that hand state is not active when fire mode is de-activated.
- Keypad mode is disabled.
- 7. All latching mode states are reset.

OFF (0) or On (1)

When Pr 1.54 is subsequently set to zero the drive returns to normal operation

Pr 1.54 can only be changed from a digital input and the default configuration allocates this to digital input 4.

ĵţ

Care should be undertaken when modifying parameters as setting Pr 1.53 to zero inhibits the fire mode function and changing Pr 8.24 (Digital Input 4 source) or Pr 6.04 (Start/ Stop logic select) could result in digital input 4 source to be allocated to a parameter other than Pr 1.54.

If fire mode is activated when the drive is in a tripped state then the trip is

Only the trips listed in the following table can be initiated while fire mode is active

Trip number	String	Cause of trip
2	OU	DC bus over-voltage
3	OI.AC	AC instantaneous over-current
4	Ol.br	Braking resistor instantaneous over current
5	PS	Drive power supply fault
8	PS.10V	10V user power supply overload
9	PS.24V	24V internal power supply overload
21	O.ht1	Power device over temperature based on thermal model
31	EEF	EEProm failure
36	SAVE.Er	User parameter save error
37	PSAVE.Er	Power down save parameter error
103	Olbr.P	Power module braking IGBT over current
104	OIAC.P	Power module over current detected from the module output currents
105	Oht2.P	Power module heatsink over temperature
106	OU.P	Power module DC bus over-voltage
107	Ph.P	Power module phase loss detection
108	PS.P	Power module power supply fail
109	Oldc.P	Power module over current detected from on state voltage monitoring
110	Unid.P	Power module unidentified trip
200	SL1.HF	Slot 1 Solutions Module failure
205	SL2.HF	Slot 2 Solutions Module failure
210	SL3.HF	Slot 3 Solutions Module failure
217 to 232	HF17 to HF32	Hardware faults

It is possible for the drive or motor to become damaged when operating in fire mode because some of the drive thermal protection trips are disabled.

Advanced process PID

The advanced process PID comprises two PID controllers that may be used independently or combined to produce a single controller with more complex functions (see Pr 14.59). When a feedback signal requires square root conversion (e.g. airflow), square root scaling can be applied to PID 1 feedback (see Pr 14.58). PID 1 also includes a pre-sleep boost level facility (see Pr 14.28 and Pr 14.29) to reduce frequent transitions into sleep mode when the PID is used.

The PID system is always active even when the output destination parameters are not set to a valid destination parameter. This allows the PID controllers to be used independently from the drive via a building automation network.

	14.	01	PID 1	output				
	14.	31	PID 2	output				
R	0	Bi				NC	PT	
Û			±100.	00	\Diamond			

Pr 14.01 is the output (limited by Pr 14.13 and Pr 14.14) from PID 1 before scaling (Pr 14.15) is applied. It is derived from the following

Output = Error x [Kp + Ki/s + Kds/(0.064s + 1)]

Where:

Error = Reference (Pr 14.03, Pr 14.25) - Feedback (Pr 14.04)

Kp = proportional gain (Pr 14.10)

Ki = integral gain (Pr 14.11)

Kd = differential gain (Pr 14.12)

Therefore with an error of 100% and Kp = 1.000, the output produced by the proportional term is 100%. With an error of 100% and Ki = 1.000 the output produced by the integral term will increase linearly by 100% every second. With an error that is increasing by 100% per second and Kd = 1.000 the output produced by the differential term will be 100%. A filter with a 64ms time constant is applied to the differential term to reduce noise

	14.	02	PID m	ain ref	erence	so	urc	e paran	neter		
R\	Ν	Uni							PT	US	
\hat{v}		Pr 0	. 00 to F	r 50.9 9	•	ightharpoons			Pr 0. 0	00	

	14.	03	PID 1	referer	ice sol	ırce	pa	ramete	r		
	14.	33	PID 2	referer	ice sou	ırce	pa	ramete	r		
R۱	N	Uni							PT	US	
Û		Pr 0	.00 to F	00 to Pr 50.99					Pr 0.0	00	

The PID reference is the sum of the digital reference (Pr 14.25) and the value from the location defined by the source parameter (Pr 14.03). Before the reference is applied to the controller algorithm, it can be scaled by setting Pr 14.23 to a value other than one and/or inverted by setting Pr 14.05 = 1.

	14.	04	PID 1	feedba	ick sou	rce	pai	ramete	r		
	14.	34	PID 2	feedba	ick sou	rce	pa	ramete	r		
R۱	Ν	Uni							PT	US	
Û		Pr 0.00 to Pr 50.99							Pr 0. 0	00	

The feedback is the sum of the digital feedback (Pr 14.26) and the value from the location defined by the source parameter (Pr 14.04). Before the reference is applied to the controller algorithm, it can be scaled by setting Pr 14.24 to a value other than one and/or inverted by setting Pr 14.06 = 1.

	14.0	05	PID 1	referer	ice inv	ert				
	14.3	35	PID 2	referer	ice inv	ert				
RV	٧	Bit							US	
Û		OF	F (0) or	On (1)		\Rightarrow		OFF (0)	

	14.	06	PID 1	feedba	ck inve	ert				
	14.	36	PID 2	feedba	ck inve	ert				
R۱	Ν	Bit							US	
$\hat{\mathbb{Q}}$		OF	F (0) or	On (1)		⇧		OFF (0)	

	D 1 reference slow-rate limit D 2 reference slow-rate limit D 3 3200.0 s □ 0.0								
14.07 PID 1 reference	Information Installation Installation Started parameters the motor Optimized	nit	1	4 15 PID	1 outnut sca	lina			
14.07 PID 1 reference slew-rate limit 14.37 PID 2 reference slew-rate limit 14.38 PID 2 output scaling 14.40 PID 1 meters as one of the parameter of the paramet									
	Information Installation Installation Started parameters				24.000				,
0.0 to 3200.0 \$		0.0	₩	0.000 to	3 4.000	5		1.000	
	PID 1 reference slew-rate limit PID 2 reference slew-rate limit PID 3 reference slew-rate limit PID 3 reference slew-rate limit PID 4 reference slew-rate limit PID 5 reference slew-rate limit PID 6 reference slew-rate limit PID 1 enable PID 2 enable PID 1 optional enable source parameter 1 PID 1 optional enable source parameter 1 PID 1 optional enable source parameter 1 PID 1 proportional gain PID 2 proportional gain PID 2 integral gain PID 2 integral gain PID 2 differential gain PID 2 differential gain PID 3 differential gain PID 1 output upper limit PID 2 output upper limit			4.16 PID	1 output des	tination	paramete	r	
10% following a 0 to 100% step	Information Installation Inst	Jul.			•		•		
14.08 PID 1 enable				•				S	
RW Bit		US	1	Pr 0.00 to	Pr 50.99	\Rightarrow	<u> </u>	Pr 0.00	ı
OFF (0) or On (1)	\Rightarrow	OFF (0)							
D 1 is enabled when Pr 14.08 =	= 1 and both	the parameter sources	1	4.17 PID	1 integrator	hold			
•	PID 1 reference slew-rate limit PID 2 reference slew-rate limit ii			4.47 PID :	2 integrator	hold			
14.07 PID 1 reference slew-rate limit 14.15 PID 2 output scaling RW Uni US US	NC	U:	S						
sabled if the drive is tripped. Wh	Information Installation Inst	OFF (0)	or On (1)	\Rightarrow	(OFF (0)			
•		ss (i.e. integrator	When	this parameter	r is set to OF	F (0) the	integrator	operates	norma
			Setting	g this paramete	er to On (1) w	/ill cause	the integra	ator value	to be
•	nable source	•		0 1				egrator fro	m bei
			i coci i	o zero il tile i	D controller	3 disabic	·u.		
Pr 0.00 to Pr 50.99	\Rightarrow	Pr 0.00	1	4.18 PID	1 symmetric	al limit e	nable		
			1	4.48 PID :	2 symmetric	al limit e	nable		
									S
	iai gain	1 110 1	1	OFF (0)	or On (1)	\Rightarrow	(OFF (0)	
1									
0.000 to 4.000	7	1.000							
14 11 PID 1 integral ga	ain				2 main refer	ence	I NC I	DT I II	2
							INC	FI U	3
9 9			₩.		00.0/				
RW Uni		US	7 🖳	±100.	00 %	\Rightarrow			
	☆					\Rightarrow			
	⇨			4.20 PID	1 reference	₽			
0.000 to 4.000				4.20 PID :	1 reference		i nc i	PT U:	S
0.000 to 4.000 14.12 PID 1 differential	l gain		1 RO	4.20 PID 2 4.50 PID 2	1 reference 2 reference		NC	PT U	S
0.000 to 4.000 14.12 PID 1 differential 14.42 PID 2 differential	l gain	1.000	1 RO	4.20 PID 2 4.50 PID 2	1 reference 2 reference		NC	PT U	8
14.12 PID 1 differential 14.42 PID 2 differential RW Uni	I gain I gain	1.000	1. RO Û	4.20 PID 2 4.50 PID 2 Bi ±100.	1 reference 2 reference 00 %		NC	PT U	S
0.000 to 4.000 14.12 PID 1 differential 14.42 PID 2 differential	I gain I gain	1.000	1. RO	4.20 PID 3 4.50 PID 3 Bi ±100.	1 reference 2 reference 00 %		NC	PT U	S
14.12 PID 1 differential 14.42 PID 2 differential RW Uni 0.000 to 4.000	I gain I gain □ □ □	1.000	1. RO 🕏	4.20 PID 2 4.50 PID 2 Bi ±100. 4.21 PID 2	1 reference 2 reference 00 %				
14.12 PID 1 differential 14.42 PID 2 differential RW Uni 0.000 to 4.000 14.13 PID 1 output upp 14.43 PID 2 output upp	I gain I gain □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	1.000	10 RO	4.20 PID : 4.50 PID :	1 reference 2 reference 00 % 1 feedback 2 feedback	⇒			
0.000 to 4.000 14.12 PID 1 differential 14.42 PID 2 differential 0.000 to 4.000 14.13 PID 1 output upp 14.43 PID 2 output upp RW Uni	I gain I gain □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	1.000 US 1.000	10 RO	4.20 PID : 4.50 PID :	1 reference 2 reference 00 % 1 feedback 2 feedback	⇒			
0.000 to 4.000 14.12 PID 1 differential 14.42 PID 2 differential 0.000 to 4.000 14.13 PID 1 output upp 14.43 PID 2 output upp RW Uni	I gain I gain □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	1.000 US 1.000	1. RO \$\frac{1}{1}\$ RO \$\frac{1}{2}\$ RO \$\frac{1}{2}\$	4.20 PID 2 4.50 PID 2 Bi ±100. 4.21 PID 2 4.51 PID 2 Bi ±100.	1 reference 2 reference 00 % 1 feedback 2 feedback	⇒			
14.12 PID 1 differential 14.42 PID 2 differential RW Uni 0.000 to 4.000 14.13 PID 1 output upp 14.43 PID 2 output upp RW Uni 0.00 to 100.00 %	I gain I gain □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	1.000 US 1.000	10 RO	4.20 PID 3 4.50 PID 3 Bi ±100. 4.21 PID 3 4.51 PID 3 ±100.	1 reference 2 reference 00 % 1 feedback 2 feedback 00 %	⇒			
14.12 PID 1 differential 14.42 PID 2 differential RW Uni 0.000 to 4.000 14.13 PID 1 output upp 14.43 PID 2 output upp RW Uni 0.00 to 100.00 %	l gain I gain I gain per limit per limit ⇔	1.000 US 1.000	1. RO \$\frac{1}{1}\$ RO \$\frac{1}{1}\$ RO \$\frac{1}{1}\$ 1. 1. 1. 1.	4.20 PID 3 4.50 PID 3 4.50 PID 3 4.51 PID 3 4.51 PID 3 4.51 PID 3 4.51 PID 3 4.52 PID 3	1 reference 2 reference 00 % 1 feedback 2 feedback 00 %	⇒	NC	PT U:	S
14.12 PID 1 differential 14.42 PID 2 differential RW Uni 0.000 to 4.000 14.13 PID 1 output upp 14.43 PID 2 output upp RW Uni 0.00 to 100.00 % 14.14 PID 1 output low 14.44 PID 2 output low	l gain I gain I gain per limit per limit ⇔	1.000 US 1.000	1. RO \$\frac{1}{1}\$ RO \$\frac{1}{2}\$ RO \$\frac{1}{2}\$ RO \$\frac{1}{2}\$ RO \$\frac{1}{2}\$ RO	4.20 PID 2 4.50 PID 2 4.51 PID 2 4.51 PID 3 4.51 PID 3 4.52 PID 3 6 Bi	1 reference 2 reference 00 % 1 feedback 2 feedback 00 %		NC	PT U:	5
14.12 PID 1 differential 14.42 PID 2 differential RW Uni 0.000 to 4.000 14.13 PID 1 output upp 14.43 PID 2 output upp RW Uni 0.00 to 100.00 % 14.14 PID 1 output low 14.44 PID 2 output low RW Uni	I gain I gain I gain Per limit Per limit Per limit Per limit	1.000 US 1.000 US 100.00	1. RO \$\frac{1}{1}\$ RO \$\frac{1}{2}\$ RO \$\frac{1}{2}\$ RO \$\frac{1}{2}\$ RO \$\frac{1}{2}\$ RO	4.20 PID 2 4.50 PID 2 4.51 PID 2 4.51 PID 3 4.51 PID 3 4.52 PID 3 6 Bi	1 reference 2 reference 00 % 1 feedback 2 feedback 00 %		NC	PT U:	5

Getting

Basic

Running Optimization SMARTCARD PC tools Advanced Technical Diagnostics UL Listing

positive output for the PID controller and the lower limit defines the

is active then the integrator accumulator is held.

minimum positive or maximum negative output. If symmetrical limits are

selected, i.e. Pr 14.18 =c1, then the upper limit defines the maximum positive or negative magnitude for the PID output. When any of the limits Uni

0.000 to 4.000

US

1.000

		Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	------------------	-------------------	--------------	---------------------	----------	---------------------	-------------------	-------------	---------------------------

	14.	24	PID 1	feedba	ck sca	ling	ı				
	14.	54	PID 2 feedback scaling								
R۱	W Uni									US	
Û	0.000 to 4.000					\Rightarrow			1.00	0	

	14.	25	PID 1	digital	refere	псе					
	14.	55	PID 2	digital	refere	псе					
R۱	N	Bi	NC NC								
Û	±100.00 %					\Diamond			0.00)	

	14.	14.26 PID 1 digital feed									
	14.	55	PID 2	digital	feedba	ck					
R۱	W	V Bi						NC			
Û	€ ±10			0 %	⇒ 0.00						

	14.	27	PID 1	option	al enab	ole s	sou	rce par	ametei	r 2	
R\	W	V Uni							PT	US	
Û	0.00 to 50.99					\Rightarrow			0.00)	

	14.	28	Maxim	num bo	ost tin	ne				
R۷	W Uni								US	
Û	0.00 to 100.00 %					\Rightarrow		0.00)	

	14.	29	PID 1	pre-sle	ep boo	st	leve	el			
R۱	RW Uni									US	
Û	0.0 to 250.0 s					\Rightarrow			0.0		

	14.	30	PID 1	pre-sle	ep boo	st	leve	el enab	le	
R	O Bit							NC	PT	
Û	OFF (0) or On (1)		\Rightarrow							

If PID is used to control the motor output via Menu 1 and sleep mode is enabled, then the drive will automatically stop the motor when the output drops below the sleep/wake threshold. The feedback may then fall causing the output and hence the feedback to rise again. Setting Pr 14.28 and Pr 14.29 to non zero values results in the value in Pr 14.28 being added to the PID reference for a length of time defined in Pr 14.29 when the drive attempts to enter sleep mode. This will reduce the frequency of the transitions into sleep mode. Pr 14.30 indicates when the boost system is enabled.

	14.	38							
R۷	W Uni							US	
Û	0 to 2			\Rightarrow		0			

Parameter value	PID enable state
0	PID 2 disabled; output is zero and integrator reset to zero
1	PID 2 enabled
2	PID 2 enable state follows PID 1 enable state

	14.	58	Square root scaling								
R۱	N	Uni								US	
Û	0.000 to 4.000					\Rightarrow			1.00	0	

If Pr 14.58 is set a value greater than zero, then the following algorithm is applied to PID 1 feedback

Square root function output = Sign (Feedback) x 100.00% x 14.58 x v (|Feedback| / 100.00%)

Where:

Sign (Feedback) is 1 if the feedback is positive or -1 is the feedback is negative.

If \Pr **14.58** is set to 0.000 then this feature is disabled and the feedback remains unchanged.

	14.	59	PID m	ode se	lector					
R'	W Uni								US	
$\hat{\mathbb{Q}}$	0 to 7					\Diamond		0		

Normal mode (Pr 14.59 is between 0 and 5)

The two PID controllers operate independently. The feedback for PID2 is always from the PID2 feedback input. The feedback for PID1 is as given in the following table.

Pr 14.59	Final PID1 feedback
0	PID1 feedback
1	PID2 feedback
2	PID1 feedback + PID2 feedback
3	Lowest of PID1 feedback and PID2 feedback
4	Highest of PID1 feedback and PID2 feedback
5	(PID1 feedback + PID2 feedback) / 2

Dual Zone Mode (Pr 14.59 is 6 or 7)

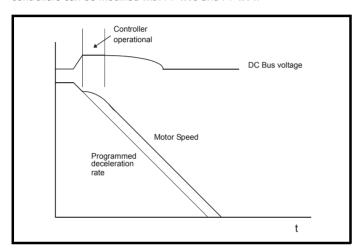
When PID mode 6 or 7 is selected the controller operates in a dual zone mode. In this mode the reference and feedback quantities from each PID controller are used to calculate two controller errors. These two errors are then checked and the zone with the larger or smaller absolute value of error (depending upon mode selected) is used as the error signal to the PID1 controller.

Pr 14.59	Final PID1 feedback	PID1 error
6	PID1 feedback	Lowest of PID1 Error or PID2 Error
7	PID1 feedback	Highest of PID1 Error or PID2 Error

11.21.5 Braking Modes

	2.0)4	Ramp mode select									
R۱	Ν	Txt								US		
OL	ĵ;	FASt (0), Std (1), Std.hV (2)				☆			Std (*	1)		
RFC	ľ	F	FASt (0), Std (1)						,	,		

This parameter does not affect the acceleration ramp, as the ramp output always rises at the programmed acceleration rate subject to the current limits. It is possible in under some unusual circumstances in open-loop mode (i.e. highly inductive supply) for the motor to reach a low speed in standard ramp mode, but not completely stop. It is also possible if the drive attempts to stop the motor with an overhauling load in any mode that the motor will not stop when standard ramp mode or fast ramp mode is used. If the drive is in the deceleration state the rate of fall of the frequency or speed is monitored. If this does not fall for 10 seconds the drive forces the frequency or the speed reference to zero.


This only applies when the drive is in the deceleration state and not when the reference is simply set to zero.

0: Fast ramp

Fast ramp is used where the deceleration follows the programmed deceleration rate subject to current limits.

1: Standard ramp

Standard ramp is used. During deceleration, if the voltage rises to the standard ramp level (Pr 2.08) it causes a controller to operate, the output of which changes the demanded load current in the motor. As the controller regulates the link voltage, the motor deceleration increases as the speed approaches zero speed. When the motor deceleration rate reaches the programmed deceleration rate the controller ceases to operate and the drive continues to decelerate at the programmed rate. If the standard ramp voltage (Pr 2.08) is set lower than the nominal DC Bus level the drive will not decelerate the motor, but it will coast to rest. The output of the ramp controller (when active) is a current demand that is fed to the frequency changing current controller (Open-loop modes) or the torque producing current controller (RFC). The gain of these controllers can be modified with Pr 4.13 and Pr 4.14.

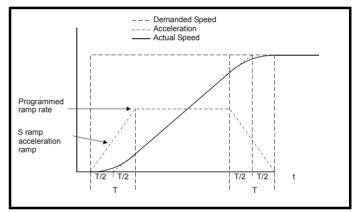
2: Standard ramp with motor voltage boost

This mode is the same as normal standard ramp mode except that the motor voltage is boosted by 20%. This increases the losses in the motor giving faster deceleration.

	2.0	8	Stand	ard ran	np volt	age)				
R۷	W Uni RA							US			
≎	DO	C_VOL	0 to TAGE_		IAX V	仓		400V 57	OV drive drive: E L 5V drive OV drive	:UR> 7 JSA> 7 e: 895	

This voltage is used as the control level for standard ramp mode. If this parameter is set too low the machine will coast to rest, and if it is set too high and no braking resistor is used the drive may give an over-volt 'OV' trip. The minimum level should be greater than the voltage produced on the DC Bus by the highest supply voltage. Normally the DC Bus voltage will be approximately the rms supply line voltage x $\sqrt{2}$.

Care should be taken in the setting of this parameter. It is recommended that the setting should be at least 50V higher than the maximum expected level of the DC Bus voltage. If this is not done, the motor may fail to decelerate on a STOP WARNING command.

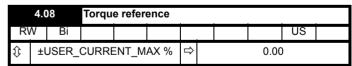

11.21.6 S ramps

	2.0)6	S ram	p enab	le					
R۱	N	Bit	Bit						US	
$\hat{\mathbb{Q}}$	OFF (0) or On (1)					$\qquad \qquad $		OFF ((0)	

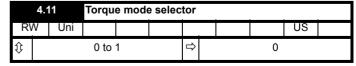
Setting this parameter enables the S ramp function. S ramp is disabled during deceleration using standard ramp. When the motor is accelerated again after decelerating in standard ramp the acceleration ramp used by the S ramp function is reset to zero.

	2.0)7	S ram	р ассе	leratio	n lir	nit			
R۱	RW Uni								US	
OL	î		0.0 to s ² /10			Ó		3.1		
RFC	*	0	0.000 to 100.000 s ² /1000rpm					1.50	0	

This parameter defines the maximum rate of change of acceleration/ deceleration. The default values have been chosen such that for the default ramps and maximum speed, the curved parts of the S will be 25% of the original ramp if S ramp is enabled.

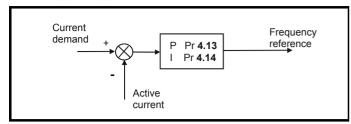


Since the ramp rate is defined in s/100Hz or s/1000rpm and the S ramp parameter is defined in s²/100Hz or s²/1000rpm, the time T for the 'curved' part of the S can be determined from:


T = S ramp rate of change / Ramp rate

Enabling S ramp increases the total ramp time by the period T since an additional T/2 is added to each end of the ramp in producing the S.

11.21.7 **Torque modes**


Parameter for main torque reference. The normal update rate for the torque reference is 4ms. However if analog inputs 2 or 3 on the drive are used as the source of the reference, the drive is in RFC mode and the analog inputs are in voltage mode with zero offset, the sample time is reduced to 250us.

Open loop

If this parameter is 0 normal frequency control is used. If this parameter is set to 1 the current demand is connected to the current PI controller giving closed loop torque/current demand as shown below. The current error is passed through proportional and integral terms to give a

frequency reference which is limited to the range: -SPEED FREQ MAX to +SPEED_FREQ_MAX.

RFC

When this parameter is set to 1, 2 or 3 the ramps are not active while the drive is in the run state. When the drive is taken out of the run state, but not disabled, the appropriate stopping mode is used. It is recommended that coast stopping or stopping without ramps are used. However, if ramp stop mode is used the ramp output is pre-loaded with the actual speed at the changeover point to avoid unwanted jumps in the speed reference.

0: Speed control mode

The torque demand is equal to the speed loop output.

1: Torque control

The torque demand is given by the sum of the torque reference and the torque offset, if enabled. The speed is not limited in any way, however, the drive will trip at the overspeed threshold if runaway occurs.

11.21.8 Stop modes

	6.0	1	Stop r	node							
R۱	Ν	Txt							US		
OL	\$		St (0), r dcl (3) diSAb	, td.dcl		⇔	rP (1)				
RFC		COASt (0), rP (1), no.rP (2)		1),							

Open-loop

Stopping is in two distinct phases: decelerating to stop, and stopped.

Stopping	Disease 4	Di 0	0
Mode	Phase 1	Phase 2	Comments
0: Coast	Inverter disabled	Drive cannot be re-enabled for 1s	Delay in phase 2 allows rotor flux to decay
1: Ramp	Ramp down to zero frequency	Wait for 1s with inverter enabled	
2: Ramp followed by DC injection	Ramp down to zero frequency	Inject DC at level specified by Pr 6.06 for time defined by Pr 6.07	
3: DC injection with zero speed detection	Low frequency current injection with detection of low speed before next phase	Inject DC at level specified by Pr 6.06 for time defined by Pr 6.07	The drive automatically senses low speed and therefore it adjusts the injection time to suit the application. If the injection current level is too small the drive will not sense low speed (normally a minimum of 50-60% is required).
4: Timed DC injection braking stop	Inject DC at level specified by Pr 6.06 for time specified by Pr 6.07		
5: Disable	Inverter disabled		Allows the drive to be immediately disabled and then re-enabled again immediately if required.

Once modes 3 or 4 have begun the drive must go through the ready state before being restarted either by stopping, tripping or being disabled.

If this parameter is set to DiASbLE (5), the disable stopping mode is used when the run command is removed. This mode will allow the drive to be started immediately by re-applying the run command. However, if the drive is disabled by removing the drive enable (i.e. via the Enable input or Pr 6.15 Drive enable) then the drive cannot be re-enabled for 1s.

RFC

Only one stopping phases exists and the ready state is entered as soon as the single stopping action is complete.

Stopping Mode	Action
0: Coast	Inhibits the inverter
1: Ramp	Stop with ramp
2: No ramp	Stop with no ramp

I	6.06			Injection braking level									
	RW Uni								RA		US		
ı	OL	Û	0.0 to 150.0 %				\Box			100.	0		

Defines the current level used during DC injection braking as a percentage of motor rated current as defined by Pr 5.07.

	6.0)7	Injecti	Injection braking time								
R۱	Ν	Uni								US		
OL	Û	0.0 to 25.0 s				\Diamond			1.0			

Defines the time of injection braking during phase 1 with stopping modes 3 and 4, and during phase 2 with stopping mode 2 (see Pr 6.01).

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

11.21.9 Line power supply loss modes

	6.0)3	Line p	ower s	upply	los	s m	ode			
RW Txt										US	
\hat{v}	diS (0), StoP (1), ridE.th (2)					\Rightarrow			diS (0)	

0: diS

There is no line power supply loss detection and the drive operates normally only as long as the DC bus voltage remains within specification (i.e. >Vuu). Once the voltage falls below Vuu an under-voltage 'UV' trip occurs. This will reset itself if the voltage rises above Vuu Restart, as stated in the table below.

1: StoP - Open-loop

The action taken by the drive is the same as for ride through mode, except the ramp down rate is at least as fast as the deceleration ramp setting and the drive will continue to decelerate and stop even if the line power supply is re-applied. If normal or timed injection braking is selected the drive will use ramp mode to stop on loss of the supply. If ramp stop followed by injection braking is selected, the drive will ramp to a stop and then attempt to apply dc injection. At this point, unless the line power supply has been restored, the drive is likely to initiate a trip.

1: StoP - RFC

The speed reference is set to zero and the ramps are disabled allowing the drive to decelerate the motor to a stop under current limit. If the Line power supply is re-applied while the motor is stopping any run signal is ignored until the motor has stopped. If the current limit value is set very low level the drive may trip UV before the motor has stopped.

2: ridF th

The drive detects line power supply loss when the DC Bus voltage falls below Vml₁. The drive then enters a mode where a closed-loop controller attempts to hold the DC Bus level at Vml₁. This causes the motor to decelerate at a rate that increases as the speed falls. If the line power supply is re-applied it will force the DC Bus voltage above the detection threshold Vml₃ and the drive will continue to operate normally. The output of the line power supply loss controller is a current demand that is fed into the current control system and therefore the gain Pr 4.13 and Pr 4.14 must be set up for optimum control. See parameters Pr 4.13 and Pr 4.14 for set-up details.

The following table shows the voltage levels used by drives with each voltage rating.

Voltage level	200V drive	400V drive	575V drive	690V drive			
Vuu	175	330	435				
VmI ₁	205*	410*	540*				
Vml ₂	VmI ₁ - 10V	Vml ₁ - 20V	Vml ₁ - 25V				
Vml ₃	VmI ₁ + 10V	VmI ₁ + 15V	Vml ₁ + 50V				
Vuu Restart	215	425	590				

^{*} Vml₁ is defined by Pr 6.48. The values in the table above are the default values.

I		6.4	18	Line p	ower s	upply	los	s ric	de thro	ugh de	tection	level
I	R۱	W Uni							RA		US	
	≎	D	C_VOL	0 to TAGE_		IAX V	↔		40 57	0V driv 0V driv 5V driv 0V driv	e: 410 e: 540	

The line power supply loss detection level can be adjusted using this parameter. If the value is reduced below the default value, the default value is used by the drive. If the level is set too high, so that the line power supply loss detection becomes active under normal operating conditions, the motor will coast to a stop.

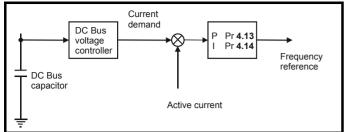
	4.1	3	Curre	nt loop	P gair	1						
R۷	RW Uni									US		
OL	${\bf \hat{v}}$					\Diamond		All voltage ratings: 20				
RFC	\$	ı	0 to 30,000					40 57	00V driv 0V driv 5V driv 0V driv	e: 150 e: 180		

	4.14 Current loop I gain												
R۷	N	Uni								US			
OL	${\bf \hat{v}}$					\Diamond		All voltage ratings: 40					
RFC	\$	1	0 to 30,000					400 575	V drive V drive	: 1,000 : 2,000 : 2,400 : 3,000			

Open-loop

These parameters control the proportional and integral gains of the current controller used in the open loop drive. As already mentioned the current controller either provides current limits or closed loop torque control by modifying the drive output frequency. The control loop is also used in its torque mode during line power supply loss, or when the controlled mode standard ramp is active and the drive is decelerating, to regulate the flow of current into the drive. Although the default settings have been chosen to give suitable gains for less demanding applications it may be necessary for the user to adjust the performance of the controller. The following is a guide to setting the gains for different applications.

Current limit operation:


The current limits will normally operate with an integral term only, particularly below the point where field weakening begins. The proportional term is inherent in the loop. The integral term must be increased enough to counter the effect of the ramp which is still active even in current limit. For example, if the drive is operating at constant frequency and is overloaded the current limit system will try to reduce the output frequency to reduce the load. At the same time the ramp will try to increase the frequency back up to the demand level. If the integral gain is increased too far the first signs of instability will occur when operating around the point where field weakening begins. These oscillations can be reduced by increasing the proportional gain. A system has been included to prevent regulation because of the opposite actions of the ramps and the current limit. This can reduce the actual level that the current limit becomes active by 12.5%. This still allows the current to increase up to the current limit set by the user. However the current limit flag (Pr 10.09) could become active up to 12.5% below the current limit depending on the ramp rate used.

Again the controller will normally operate with an integral term only, particularly below the point where field weakening begins. The first signs of instability will appear around base speed, and can be reduced by increasing the proportional gain. The controller can be less stable in torque control mode rather than when it is used for current limiting. This is because load helps to stabilise the controller, and under torque control the drive may operate with light load. Under current limit the drive is often under heavy load unless the current limits are set at a low level.

Line power supply loss and controlled standard ramp:

The DC bus voltage controller becomes active if line power supply loss detection is enabled and the drive supply is lost or controlled standard ramp is being used and the machine is regenerating. The DC bus controller attempts to hold the DC bus voltage at a fixed level by controlling the flow of current from the drive inverter into its DC bus capacitors. The output of the DC bus controller is a current demand which is fed into the current PI controller as shown in the

following diagram.

Although it is not usually necessary the DC bus voltage controller can be adjusted with Pr **5.31**. However, it may often be necessary to adjust the current controller gains to obtain the required performance. If the gains are not suitable it is best to set up the drive in torque control first. Set the gains to a value that does not cause instability around the point at which field weakening occurs. Then revert back to open loop speed control in standard ramp mode. To test the controller the supply should be removed while the motor is running. It is likely that the gains can be increased further if required because the DC bus voltage controller has a stabilising effect, provided that the drive is not required to operate in torque control mode.

RFC

The Kp and Ki gains are used in the voltage based current controller. The default values give satisfactory operation with most motors. However it may be necessary to change the gains to improve the performance. The proportional gain (Pr **4.13**) is the most critical value in controlling the performance. Either the value can be set by auto-tuning (see Pr **5.12**) or it can be set by the user so that

$$Pr 4.13 = Kp = (L / T) x (I_{fs} / V_{fs}) x (256 / 5)$$

Where:

T is the sample time of the current controllers. The drive compensates for any change of sample time, and so it should be assumed that the sample time is equivalent to the lowest sample rate of $167\mu s$.

L is the motor inductance. For an induction motor this is the per phase transient inductance $(\sigma L_s).$ This is the inductance value stored in Pr **5.24** after the autotune test is carried out. If σL_s cannot be measured it can be calculated from the steady state per-phase equivalent circuit of the motor as follows:

$$\sigma L_s = L_s - \left(\frac{L_m^2}{L_r}\right)$$

 $\rm I_{fs}$ is the peak full scale current feedback = K $_{C}$ x $\sqrt{2}$ / 0.45. Where K $_{C}$ is defined in Table 11-5.

V_{fs} is the maximum DC Bus voltage.

Therefore

Pr **4.13** = Kp = (L / 167
$$\mu$$
s) x (K_C x $\sqrt{2}$ / 0.45 / V_{fs}) x (256 / 5) = K x L x K_C

Where:

 $K = [\sqrt{2} / (0.45 \times V_{fs} \times 167 \mu s)] \times (256 / 5)$

Drive voltage rating	Vfs	K
200V	415V	2322
400V	830V	1161
575V	990V	973
690V	1190V	809

This set-up will give a step response with minimum overshoot after a step change of current reference. The approximate performance of the current controllers will be as given below. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth, however, this gives at step response with approximately 12.5% overshoot.

Switching frequency kHz	Current control sample time μs	Gain bandwidth Hz	Phase delay μs
3	167	TBA	1160
4	125	TBA	875
6	83	TBA	581
8	125	TBA	625
12	83	TBA	415
16	125	TBA	625

The integral gain (Pr 4.14) is less critical and should be set so that

Pr **4.14** = Ki = Kp x 256 x T /
$$\tau_{m}$$

Where:

 τ_{m} is the motor time constant (L / R).

R is the per phase stator resistance of the motor (i.e. half the resistance measured between two phases).

Therefore

Pr **4.14** = Ki =
$$(K \times L \times K_C) \times 256 \times 167 \mu s \times R / L$$

= 0.0427 x K x R x K_C

The above equation gives a conservative value of integral gain. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed applications) the integral gain may need to have a significantly higher value.

11.21.10 Catch a spinning motor

	6.0	19	Catch	a spin	ning m	oto	r				
R۱	Ν	Uni								US	
OL	⇧	0 to 3 0 to 1				Û			0		
RFC	RFC					,	1				

Open-loop

When the drive is enabled with this parameter at zero, the output frequency starts at zero and ramps to the required reference. When the drive is enabled with this parameter at a non-zero value, the drive performs a start-up test to determine the motor speed and then sets the initial output frequency to the synchronous frequency of the motor.

The test is not carried out and the motor frequency starts at zero if one of the following is true.

- The run command is given when the drive is in the stop state
- The drive is first enabled after power-up with Ur_I voltage mode (Pr 5.14 = Ur I).
- The run command is given with Ur_S voltage mode (Pr 5.14 = Ur_S).

With default parameters the length of the test is approximately 250ms, however, if the motor has a long rotor time constant (usually large motors) it may be necessary to extend the test time. The drive will do this automatically if the motor parameters including the rated load rpm are set up correctly for the motor.

For the test to operate correctly it is important that the stator resistance (Pr **5.17** or Pr **21.12**) is set up correctly. This applies even if fixed boost (Pr **5.14** = Fd) or square law (Pr **5.14** = SrE) voltage mode is being used. The test uses the rated magnetising current of the motor during the test, therefore the rated current (Pr **5.07**, Pr **21.07** and Pr **5.10**, Pr **21.10**) and power factor should be set to values close to those of the motor, although these parameters are not as critical as the stator resistance. For larger motors it may be necessary to increase Pr **5.40** *Spin start boost* from its default value of 1.0 for the drive to successfully detect the motor speed.

It should be noted that a stationary lightly loaded motor with low inertia might move slightly during the test. The direction of the movement is

undefined. Restrictions may be placed on the direction of this movement and on the frequencies detected by the drive as follows:

Pr 6.09	Function
0	Disabled
1	Detect all frequencies
2	Detect positive frequencies only
3	Detect negative frequencies only

RFC

When the drive is enabled with this bit at zero, the post ramp reference (Pr 2.01) starts at zero and ramps to the required reference. When the drive is enabled with this bit at one, the post ramp reference is set to the motor speed.

If catch a spinning motor is not required, this parameter should be set to zero as this avoids unwanted movement of the motor shaft when zero speed is required. With larger motors it may be necessary to increase Pr 5.40 Spin start boost from its default value of 1.0 for the drive to successfully detect the motor speed.

11.21.11 **Fast Disable**

	6.2	9	Hardw	are en	able				
R	0	Bit					NC	PT	
$\hat{\boldsymbol{v}}$	OFF (0) or On (1)				\Box				

This bit is a duplicate of Pr 8.09 and reflects the state of the enable input. If the destination of one of the drive digital I/O (Pr 8.21 to Pr 8.26) is set to Pr 6.29 and the I/O is set as an input, the state of the input does not affect the value of this parameter as it is protected, however, it does provide a fast disable function.

The Enable input to the drive (T31) disables the drive in hardware by removing the gate drive signals from the inverter IGBT's and also disables the drive via the software system. When the drive is disabled by de-activating the Enable input (T31) there can be a delay of up to 20ms (typically 8ms) before the drive is disabled. However, if a digital I/O is set up to provide the fast disable function it is possible to disable the drive within 600µs of de-activating the input. To do this an enable signal should be given to both the Enable input (T31) and to the digital I/O selected for the fast disable function. The state of the digital I/O including the effect of its associated invert parameter is ANDed with the Enable (T31) to enable the drive

Building automation interface 11.21.12

	17.	01	ID nur	nber					
R	0	Uni					PT	US	
\hat{v}	0 to 599				\Rightarrow				

The ID code for the building automation interface is 402.

	17.02		Softwa	are ver	sion					
R	С	Uni						PT	US	
$\hat{\mathbb{Q}}$	0.00 to 99.99					\Rightarrow				

	17.	51	Softwa	Software sub version									
RO		Uni						NC					
Û	Û		0 to 9	9		\Diamond							

Pr 17.02 and Pr 17.51 display the firmware version in the form xx.yy.zz, where xx.yy is Pr 17.02 and zz is Pr 17.51.

	17.	03	MAC/I	MAC/Node address									
R۱	N	Uni								US			
Û	0 to 65535				\Rightarrow			0					

	Minimum Maximum 1 247 0 127					
Protocol	Minimum	Maximum				
Modbus RTU	1	247				
BACnet	0	127				
Metasys N2	1	255				

If a MAC address is selected that is greater than or less than those allowed by the currently selected protocol, then the actual address used will be the maximum valid address value.

	17.	04	Baud	rate						
R۱	N	Uni							US	
Û	0 to 127				\Diamond		0			

This selects the baud rate used for network communication.

Pr 17.04 Value	Baud rate (bps)
0	Protocol default value (see table below)
1	1200
2	2400
3	4800
4	9600
5	19200
6	38400
7	57600
8	76800
>8	Protocol default value (see table below)

The default value when Pr 17.04 is set to 0 OR >8 is as follows:

Protocol	Default baud rate (bps)
Modbus RTU	19200
BACnet	9600
Metasys N2	3000

		17.	05	Buildi	Building automation network protocol									
ı	R۷	RW Uni									US			
	Û	0 to 65535					\Rightarrow			0				

This selects the protocol used for the building automation network as follows:

17.05	Protocol
0	Disabled
1	Modbus RTU
2	BACnet
3	Metasys N2

If a value greater than 3 is entered for Pr 17.05 then the building automation network is disabled.

I		17.	06	Recei	Received message counter									
	R	C	Uni						NC	PT				
	Û			0 to 99	999		\Rightarrow							

This parameter displays the number of valid messages that have been received using the currently selected building automation protocol. If the communications settings are configured correctly then this counter will

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontingination	SMARTCARD	DC to als	Advanced	Technical	Diamantina	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

count each time a message is received, therefore if the value remains constant then there is likely to be an error in either the configuration or the wiring to the communications port.

The received message counter is reset to in the following circumstances:

- 1. When another message is received after 9999 prior valid messages have been received
- Upon power up

	17.	07	MS/TP maximum master MAC address								
R۱	N	Bi								US	
Û	0 to 3000					\Rightarrow			127		

BACnet use only

This is highest address that the drive will use when looking for the next master on the network with which token passing can be achieved.

If a value greater than 127 is entered then the value used will be 127. The parameter value will change to 127 to reflect this.

	17.	10	Device object identifier								
R۱	RW Bi									US	
\hat{v}	32767 to -32768					\Rightarrow			0		

BACnet use only

If this parameter is zero, then the MAC/Node address selected in Pr 17.03 will be used as the object identifier for the BACnet device; otherwise the device object identifier will be the value specified here.

If the node address is also set to zero then the device object identifier value will be set to 1.

	17.	35	CRC errors									
R	0	Uni						NC	PT			
Û	0 to 2 ³¹ -1				\Diamond							

If an error is detected in the message header or message body then this count is incremented by one and the message disposed of.

This parameter should remain constant when the connection to the building automation network is operating correctly.

The CRC error count is reset to zero in the following circumstances:

- 1. When another CRC error is detected after 32767 prior errors.
- 2. Upon power up or drive reset

	17.	38	Data f	ormat						
R۱	N	Bi							US	
\hat{v}	0 to 255				\Rightarrow		0			

This selects the data transmission format used for the selected protocol.

Pr 17.38	Description										
F1 17.50	Start Bits	Data Bits	Parity	Stop Bits							
0											
1	1	8	None	1							
2	1	8	None	2							
3	1	8	Even	1							
4	1	8	Odd	1							
>4	Protocol default value										

The default value when Pr 17.38 is set to 0 OR >4 is as follows:

Protocol	Description									
FIOLOCOI	Start bits	Data bits	Parity	Stop bits						
Modbus RTU	1	8	None	2						
BACnet	1	8	None	1						
Metasys N2	1	8	None	1						

	17.	39	Response turn-around time									
R۱	V	Uni								US		
Û	0 to 255 ms					\Box			5			

Modbus RTU only

There will always be a finite delay between the end of a message from the host (master) and the time at which the host is ready to receive the response from the drive (slave). The drive does not respond until at least 1ms after the message has been received from the host allowing 1ms for the host to change from transmit to receive mode. This initial delay can be extended using Pr 17.39 if required.

Pr 17.39	Action
0	The transmitters are turned on and data transmission begins immediately after the initial delay (≥1ms).
1	The transmitters are turned on after the initial delay (≥1ms) and data transmission begins 1ms later.
2 or more	The transmitters are turned on after a delay of at least the time specified in Pr 17.39 and data transmission begins 1ms later.

Modbus RTU uses a silent period detection system to detect the end of a message. This silent period is either the length of time for 3.5 characters at the present baud rate or the length of time set in Pr 17.39 whichever is the longest.

17.44			Real-time clock battery low								
R	RO Uni							NC	PT		
Û	0 to 255					\Box					

The real-time clock backup battery is checked upon power up and after a drive reset to determine if it should be changed. The conditions requiring battery replacement are when all power has been lost to the real-time clock while the drive was un-powered or that the battery voltage has fallen below 2.5Vdc.

If this parameter is 1 then the real-time clock backup battery should be replaced at the earliest opportunity.

The real-time clock will continue to operate as long as the drive remains

For instructions of how to replace the battery of the real-time clock, refer to Figure 3-56 on page 59.

I	17.50			Error	status				
ı	R	C	Uni				NC		
	Û	0 to 255				\Box			

If the Solutions Module detects a fault then the drive will trip with an SL3.Er trip. The source of the trip can then be discovered from the error code written into Pr 17.50.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

Possible error codes are shown in the table below:

Pr 17.50	Description
0	No error
10	Option module operating system error
20	Real-time clock error
30	IP54 cooling fan power supply fault
40	Drive to option module interface error
50	Building automation network error
74	Option module PCB over-temperature

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor		operation		parameters	Data	g	Information

Technical Data 12

12.1 **Drive technical data**

Power and current ratings (Derating for switching frequency and temperature) 12.1.1

Table 12-1 Summary of power and current rating tables

Table	Description	Applicable drives
Table 12-2	Maximum permissible continuous output current @ 40°C (104°F) ambient	Size 1 to 6 standard and 1 to 3 E12/E54
Table 12-3	Maximum permissible continuous output current @ 40°C (104°F) ambient with IP54 insert and standard fan installed	Size 1 and 2 standard
Table 12-4	Maximum permissible continuous output current @ 50°C (122°F) ambient	Size 1 to 6 standard and 1 to 3 E12/E54
Table 12-4	Maximum permissible continuous output current @ 35°C (95°F) ambient	Size 4 to 6 E12/54
Table 12-4	Maximum permissible continuous output current @ 40°C (104°F) ambient	Size 4 to 6 E12/54
Table 12-4	Maximum permissible continuous output current @ 45°C (113°F) ambient	Size 4 to 6 E12/54

Safety Information	Product	Mechanical	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD	PC tools	Advanced	Technical Data	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor		operation		parameters	Data	3	Information

Table 12-2 Maximum permissible continuous output current @ 40°C (104°F) ambient for standard and size 1 to 3 E12/E54 drives

Model	Nominal	rating	Maximum permissible continuous output current (A) for the following switching frequency						
Model	kW	hp	3kHz	4kHz	12kHz	16kHz			
BA1201	1.1	1.5		•	•	5.2		•	
BA1202	1.5	2.0				6.8			
BA1203	2.2	3.0				9.6			
BA1204	3.0	3.0				11.0			
BA2201	4.0	5.0				15.5			
BA2202	5.5	7.5				22.0			
BA2203	7.5	10		28.0	24.8	21.8			
BA3201	11	15							
BA3202	15	20		54	.0		48.5		
BA4201	18.5	25		68	.0				
BA4202	22	30		80	.0				
BA4203	30	40		10)4				
BA5201	37	50	130						
BA5202	45	60	154	1					
BA1401	1.1	1.5	1	1	ı	2.8			
BA1402	1.5	2.0	1			3.8			
BA1403	2.2	3.0	1			5.0			
BA1404	3.0	5.0	1		6.9			5.9	
BA1405	4.0	5.0		8	8		7.4	5.7	
BA1406	5.5	7.5		11.0	7.4	5.7			
BA2401	7.5	10		15	12.7	10.1			
BA2402	11	15	2	1.0	19.5	16.7	12.7	10.0	
BA2403	15	20	29.0	27.2	23.2	20.0	15.0	11.8	
BA3401	18.5	25		35.0		30.3	22.4	17.4	
BA3402	22	30	4:	3.0	39.5	32.8	24.0	18.5	
BA3403	30	40	56.0	48.7	39.5	32.8	24.0		
BA4401	37	50		68.0		62.0			
BA4402	45	60	8:	3.0	74.0	63.0			
BA4403	55	75		04	95.1	78.8			
BA5401	75	100		38	118	97.1			
BA5402	90	125	168	158	129	107			
BA6401	110	150		05	164.1				
BA6402	132	200	236	210.4	157.7				
BA3501	3.0	3.0			4				
BA3502	4.0	5.0	1	6					
BA3503	5.5	7.5	1	8					
BA3504	7.5	10	1	11					
BA3505	11	15	1		.0				
BA3506	15	20	2	2.0	21.6	18.2			
BA3507	18.5	25	27.0	26.0	21.6	18.1			
BA4601	18.5	25		20.0					
BA4602	22	30	1	27					
BA4603	30	40	1	36.0		33.9			
BA4604	37	50	4	3.0	41.3	33.7			
BA4605	45	60	52.0	51.9	41.2	33.7			
BA4606	55	75	62.0	61.3	48.4	39.6			
BA5601	75	100		34	69	54			
	90	125	99	91	69	54			
RASSO	3 0	123	99	1 31	09	J -1			
BA5602 BA6601	110	150	125	100	74				

NOTE

For the definition of ambient temperature, see section 3.7 Enclosure design and drive ambient temperature on page 46.

						_		OMAN DECARD					
Safety	Product	Mechanical	Electrical	Getting	Basic	Running	0-4::	SMARTCARD	DO 41-	Advanced	Technical	D:	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information
IIIIOIIIIalioii	IIIIOIIIIalioii	IIIStaliation	IIIStaliation	Starteu	parameters	the motor		operation		parameters	Dala		IIIIOIIIIalioii

Table 12-3 Maximum permissible continuous output current @ 40°C (104°F) ambient for size 1 and 2 drives with IP54 insert and standard fan installed

Model	Nomina	l rating	Maximum permissible continuous output current (A) for the following switching frequencies							
Wiodei	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz		
BA1201	1.1	1.5		•		5.2		•		
BA1202	1.5	2.0		6.8						
BA1203	2.2	3.0		9.6		9.3	8.2	7.3		
BA1204	3.0	3.0	11.0	10.6	9.7	9.0	7.7	6.6		
BA2201	4.0	5.0		15.5						
BA2202	5.5	7.5	22.0			20.7	18.0	15.7		
BA2203	7.5	10	24.5	23.7	22.0	20.5	17.9	15.6		
BA1401	1.1	1.5		2.8						
BA1402	1.5	2.0			3.8			2.9		
BA1403	2.2	3.0		5.0 3.9						
BA1404	3.0	5.0	6	.9	6.5	5.4	3.9	2.9		
BA1405	4.0	5.0	8.3	7.3	5.8	4.7	3.2	2.3		
BA1406	5.5	7.5	8.3	7.3	5.8	4.7	3.2	2.3		
BA2401	7.5	10		15.3		13.3	10.1	7.9		
BA2402	11	15	20.1	18.4	15.6	13.4	10.1	7.9		
BA2403	15	20	21.7	19.7	16.4	13.9	10.2	7.7		

NOTE

For the definition of ambient temperature, see section 3.7 Enclosure design and drive ambient temperature on page 46.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC 10015	parameters	Data	Diagnostics	Information

Table 12-4 Maximum permissible continuous output current @ 50°C (122°F) ambient for standard and size 1 to 3 E12/E54 drives

Model	Nomina	rating	Maximum permissible continuous output current (A) for the following switching frequenc							
Model	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz		
BA1201	1.1	1.5		•	•	5.2	·	ı		
BA1202	1.5	2.0				6.8				
BA1203	2.2	3.0			9.6			9.0		
BA1204	3.0	3.0		11.0		10.9	9.5	8.3		
BA2201	4.0	5.0		15	5.5	1	13.5	11.5		
BA2202	5.5	7.5	19.7	18.9	17.3	15.9	13.5	11.5		
BA2203	7.5	10	19.5	18.6	17.2	15.8	13.4	11.5		
BA3201	11	15			2.0	l	38.2			
BA3202	15	20	54	4.0	52.8	47.0	38.2			
BA4201	18.5	25			3.0					
BA4202	22	30			0.0					
BA4203	30	40			7.4					
BA5201	37	50			0.0					
BA5202	45	60		154.0		143.2				
BA1401	1.1	1.5	1			2.8				
BA1402	1.5	2.0				3.8				
BA1403	2.2	3.0			5.0			3.9		
BA1404	3.0	5.0	1	6	.9		5.1	3.9		
BA1405	4.0	5.0	8	5.8	7.3	6.0	4.2	3.1		
BA1406	5.5	7.5	10.1	9.0	7.3	6.0	4.2	3.1		
BA2401	7.5	10	15.3	14.2	11.8	10.0	7.3	5.5		
BA2402	11	15	15.7	14.2	11.8	10.0	7.3	5.5		
BA2403	15	20	16.8	15.0	12.2	10.0	7.1	0.0		
BA3401	18.5	25		5.0	31.0	25.8	18.7	14.2		
BA3402	22	30	43.0	39.5	31.6	26.0	18.5	13.8		
BA3403	30	40	44.5	39.5	31.6	26.0	18.5	10.0		
BA4401	37	50		33.3	66.8	54.9	15.5			
BA4402	45	60	83.0	81.6	66.8	54.9				
BA4403	55	75	86.5	86.2	71.3	59.3				
BA5401	75	100		38	105.9	87.4				
BA5402	90	125	141	140	112	92				
BA6401	110	150	191.5	190.1	147.6	52				
BA6402	132	200	198.4	180.6	138.1					
BA3501	3.0	3.0	190.4		.4					
BA3502	4.0	5.0			.1					
BA3503	5.5	7.5			.4					
BA3504	7.5	10			1.0					
BA3505	11	15	1	16.0		14.7				
BA3506	15	20	2'	2.0	17.8	14.7				
BA3507	18.5	25	24.6	22.0	17.8	14.7				
BA4601	18.5	25	24.0		2.0	17.7				
BA4602	22	30		27.0	0	24.7				
BA4603	30	40	20	6.0	30.7	24.7				
BA4604	37	50	43.0	39.6	30.7	24.7				
BA4605	45	60	45.6	39.5	30.7	24.7				
	55	75	51.9	44.9	34.7	27.7				
	55									
BA4606	75	100	QQ							
BA4606 BA5601	75 90	100	83	69	51 51	40				
BA4606	75 90 110	100 125 150	83 83 98	69 69 81	51 51 59	40				

NOTE

For the definition of ambient temperature, see section 3.7 Enclosure design and drive ambient temperature on page 46.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	_	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

Table 12-5 Maximum permissible continuous output current @ 35°C (95°F) ambient for size 4 to 6 E12/54 drives

Model	Nomina	rating	Maximum permissible of	continuous output curre	ent (A) for the following	switching frequencies		
Wodei	kW	hp	3kHz	4kHz	6kHz	8kHz		
BA4201-E12/54	18.5	25		68	.0	•		
BA4202-E12/54	22	30		80	.0			
BA4203-E12/54	30	40		104	1.0			
BA5201-E12/54	37	50		130	0.0			
BA5202-E12/54	45	60		154.0		149.6		
BA4401-E12/54	37	50		68	.0			
BA4402-E12/54	45	60		83.0 104.0 90.7				
BA4403-E12/54	55	75	104	76.5				
BA5401-E12/54	75	100						
BA5402-E12/54	90	125		141.1				
BA6401-E12/54	110	150		205.0				
BA6402-E12/54	132	200		236.0				
BA4601-E12/54	18.5	25		22	.0			
BA4602-E12/54	22	30		27	.0			
BA4603-E12/54	30	40		36.0		31.5		
BA4604-E12/54	37	50	43	3.0	38.74	31.5		
BA4605-E12/54	45	60	52.0	49.03	38.7	31.5		
BA4606-E12/54	55	75	62.0	56.1	44.1	35.8		
BA5601-E12/54	75	100	84.0 63.6					
BA5602-E12/54	90	125	5 99.0 84.8 63.6 50					
BA6601-E12/54	110	150	50 125.0 116.4					
BA6602-E12/54	132	175	144.0 116.4					

Table 12-6 Maximum permissible continuous output current @ 40°C (104°F) ambient for size 4 to 6 E12/54 drives

Model	Nomina	l rating	Maximum permissible of	continuous output curre	nt (A) for the following :	switching freque
wodei –	kW	hp	3kHz	4kHz	6kHz	8kHz
BA4201-E12/54	18.5	25		68.	0	
BA4202-E12/54	22	30		80.	.0	
BA4203-E12/54	30	40		96.	6	
BA5201-E12/54	37	50		130.0		124.1
BA5202-E12/54	45	60	154	4.0	144.9	124.1
BA4401-E12/54	37	50		.0		
BA4402-E12/54	45	60	83	3.0	82.3	69.6
BA4403-E12/54	55	75	95	5.7	88.6	74.6
BA5401-E12/54	75	100	138	8.0	118.5	97.9
BA5402-E12/54	90	125	165.8	147.2	118.5	97.92
BA6401-E12/54	110	150	20:	5.0	177.7	
BA6402-E12/54	132	200	236.0	215.3	162.5	
BA4601-E12/54	18.5	25		22.	.0	
BA4602-E12/54	22	30		27.	.0	
BA4603-E12/54	30	40		36.0		30.8
BA4604-E12/54	37	50	43	3.0	37.8	30.8
BA4605-E12/54	45	60	52.0	48.0	37.8	30.8
BA4606-E12/54	55	75	62.0	54.8	43.1	34.9
BA5601-E12/54	75	100	71.0	59.0	43.0	33.0
BA5602-E12/54	90	125	71.0	59.0	43.0	32.9
BA6601-E12/54	110	150	117.4	98.1	72.4	
BA6602-E12/54	132	175	117.4	98.1	72.4	

For the definition of ambient temperature, see section 3.7 Enclosure design and drive ambient temperature on page 46.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC 10015	parameters	Data	Diagnostics	Information

Table 12-7 Maximum permissible continuous output current @ 45°C (113°F) ambient for size 4 to 6 E12/54 drives

Model	Nomina	l rating	Maximum permissible	continuous output curre	ent (A) for the following	switching frequencies
Wodei	kW	hp	3kHz	4kHz	6kHz	8kHz
BA4201-E12/54	18.5	25		68.0		61.3
BA4202-E12/54	22	30	80.0	78.8	69.1	61.3
BA4203-E12/54	30	40	84.4	78.7	69.1	61.3
BA5201-E12/54	37	50	106.5	95.1	76.9	63.2
BA5202-E12/54	45	60	106.5	95.1	77.0	63.2
BA4401-E12/54	37	50	52.6	46.1	36.2	29.1
BA4402-E12/54	45	60	52.6	46.0	36.2	29.1
BA4403-E12/54	55	75	55.3	48.2	37.3	29.5
BA5401-E12/54	75	100	92.6	80.1	61.7	48.9
BA5402-E12/54	90	125	92.6	80.1	61.6	48.8
BA6401-E12/54	110	150	99.7	82.5	58.0	
BA6402-E12/54	132	200	91.1	72.1		
BA4601-E12/54	18.5	25	22	2.0	16.6	12.9
BA4602-E12/54	22	30	26.7	22.5	16.6	12.8
BA4603-E12/54	30	40	26.7	22.4	16.6	12.8
BA4604-E12/54	37	50	26.7	22.4	16.6	12.8
BA4605-E12/54	45	60	26.7	22.4	16.5	12.8
BA4606-E12/54	55	75	29.7	24.9	18.1	13.8
BA5601-E12/54	75	100	38.7	31.0	21.2	
BA5602-E12/54	90	125	38.7	30.9	21.3	
BA6601-E12/54	110	150	46.4	36.9	25.4	
BA6602-E12/54	132	175	46.2	36.9		

NOTE

For the definition of ambient temperature, see section 3.7 Enclosure design and drive ambient temperature on page 46.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation		parameters	Data	Diagnostics	Information

12.1.2 Power dissipation Table 12-8 Summary of drive losses tables

Table	Description	Applicable drives
Table 12-9	Losses @ 40°C (104°F) ambient	Size 1 to 6 standard and 1 to 3 E12/E54
Table 12-10	Losses @ 40°C (104°F) ambient with IP54 insert and standard fan installed	Size 1 and 2 standard
Table 12-11	Losses @ 50°C (122°F) ambient	Size 1 to 6 standard and 1 to 3 E12/E54
Table 12-12	Losses @ 35°C (95°F) ambient	Size 4 to 6 E12/54
Table 12-13	Losses @ 40°C (104°F) ambient	Size 4 to 6 E12/54
Table 12-14	Losses @ 45°C (113°F) ambient	Size 4 to 6 E12/54

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor SMARTCARD operation Advanced parameters Technical Data UL Listing Information Optimization PC tools Diagnostics

Table 12-9 Losses @ 40°C (104°F) ambient for standard and size 1 to 3 F12/F54 drives

	Drive losses (W) taking into consideration any current derating for the given conditions											
Model	Nominal kW	rating hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kH				
BA1201	1.1	1.5	73	75	78	82	89	96				
BA1202	1.5	2.0	85	87	91	96	104	113				
BA1203	2.2	3.0	107	110	116	121	132	144				
BA1204	3.0	3.0	118	122	129	137	153	169				
BA2201	4.0	5.0	155	161	173	186	210	235				
BA2202	5.5	7.5	210	218	234	250	282	314				
BA2203	7.5	10	272	282	302	:	320	315				
BA3201	11	15	331	347	380	412	477					
BA3202	15	20	431	451	492	532	551					
BA4201	18.5	25	517	541	589	637						
BA4202	22	30	611	639	694	750						
BA4203	30	40	810	845	916	987						
BA5201	37	50	1250	1340	1540	1730						
BA5202	45	60	1500	1620	1840	1910						
BA1401	1.1	1.5	66	69	77	85	101	116				
BA1402	1.5	2.0	74	78	88	97	116	135				
BA1403	2.2	3.0	84	90	101	112	135	157				
BA1404	3.0	5.0	102	109	123	137	166	174				
BA1405	4.0	5.0	123	134	157	179	196	197				
BA1406	5.5	7.5	146	160	187	198	196	197				
BA2401	7.5	10	186	202	234	266	283	282				
BA2402	11	15	248	269	291	286	283	281				
BA2403	15	20	313		320	1	315	316				
BA3401	18.5	25	384	420	490	489	471	462				
BA3402	22	30	461	503	541	521	500	491				
BA3403	30	40	583	563	535	517	498					
BA4401	37	50	714	781	914	956						
BA4402	45	60	882	961	995	970						
BA4403	55	75	1070	1158	1217	1144						
BA5401	75	100	1471	1618	1640	1560						
BA5402	90	125	1830	1881	1781	1717						
BA6401	110	150	2058	2259	2153							
BA6402	132	200	2477	2455	2255							
BA3501	3.0	3.0	127	141	168	196						
BA3502	4.0	5.0	135	150	180	209						
BA3503	5.5	7.5	163	181	218	254						
BA3504	7.5	10	197	219	263	306						
BA3505	11	15	267	296	354	412						
BA3506	15	20	362	399	475	471						
BA3507	18.5	25	448	486	477	471						
BA4601	18.5	25	409	470	590	711						
BA4602	22	30	496	568	712	857						
BA4603	30	40	660	754	941	1063						
BA4604	37	50	798	908	1083	1058						
BA4605	45	60	985	1115	1080	1058						
BA4606	55	75	1060	1179	1130	1105						
BA5601	75	100	1818	2129	2258	2203						
BA5602	90	125	2176	2320	2215	2189						
BA6601	110	150	2573	2512	2438							
BA6602	132	175	3106	2512	2438							

221 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor		operation		parameters	Data	g	Information

Table 12-10 Losses @ 40°C (104°F) ambient for size 1 and 2 drives with IP54 insert and standard fan installed

		Drive losse	es (W) taking in	to consideratio	n any current d	erating for the	given conditions	
Model	Nominal	rating	2141-	41-11-	CkH-	01411-	4044	4061-
	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
BA1201	1.1	1.5	73	75	78	82	89	96
BA1202	1.5	2.0	85	87	91	96	104	113
BA1203	2.2	3.0	107	110	116		118	
BA1204	3.0	3.0		•	•	118		
BA2201	4.0	5.0	155	161	173	186	210	235
BA2202	5.5	7.5	210	218	234		237	
BA2203	7.5	10		•	•	237		
BA1401	1.1	1.5	66	69	77	85	101	116
BA1402	1.5	2.0	74	78	88	97	116	118
BA1403	2.2	3.0	84	90	101	112	11	18
BA1404	3.0	5.0	102	109			118	
BA1405	4.0	5.0		1	1	118		
BA1406	5.5	7.5				118		
BA2401	7.5	10	186	202	234		237	
BA2402	11	15		•	•	237		
BA2403	15	20				237		

	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	------------------	----------------------	--------------	---------------------	----------	---------------------	-------------------	-------------	---------------------------

Table 12-11 Losses @ 50°C (122°F) ambient for standard and size 1 to 3 F12/F54 drives

	<u> </u>		33 (W) taking in	to consideratio	I any current c	lerating for the	given conditions	ı
Model	Nominal kW	rating hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kH
BA1201	1.1	1.5	73	75	78	82	89	96
BA1202	1.5	2.0	85	87	91	96	104	113
BA1203	2.2	3.0	107	110	116	121	132	137
BA1204	3.0	3.0	118	122	129		137	ı
BA2201	4.0	5.0	155	161	173	186	1:	90
BA2202	5.5	7.5		- I	<u> </u>	190	l.	
BA2203	7.5	10				190		
BA3201	11	15	331	347	380	412	436	
BA3202	15	20	431	451	480	463	439	
BA4201	18.5	25	517	541	589	637		
BA4202	22	30	611	639	694	750		
BA4203	30	40	671	701	761	821		
BA5201	37	50	1250	1340	1540	1730		
BA5202	45	60	1380	1490	1700	1720		
BA1401	1.1	1.5	66	69	77	75	101	116
BA1402	1.5	2.0	74	78	88	97	116	135
BA1403	2.2	3.0	84	90	101	112	135	137
BA1404	3.0	5.0	102	109	123		137	
BA1405	4.0	5.0	123	134			137	
BA1406	5.5	7.5			J.	137		
BA2401	7.5	10	186			190		
BA2402	11	15				190		
BA2403	15	20			190			
BA3401	18.5	25	384	420	437	423	407	396
BA3402	22	30	461	462	439	424	406	396
BA3403	30	40	470	456	436	422	405	
BA4401	37	50	714	781	898	852		
BA4402	45	60	882	944	898	852		
BA4403	55	75	877	949	912	875		
BA5401	75	100	1471	1616	1462	1411		
BA5402	90	125	1500	1644	1543	1480		
BA6401	110	150	1942	2118	1939			
BA6402	132	200	2068	2108	1997			
BA3501	3.0	3.0	127	141	168	196		
BA3502	4.0	5.0	135	150	180	209		
BA3503	5.5	7.5	163	181	218	254		
BA3504	7.5	10	197	219	263	306		
BA3505	11	15	267	296	354	383		
BA3506	15	20	362	399	390	384		
BA3507	18.5	25	405	399	390	384		
BA4601	18.5	25	409	470	590	711		
BA4602	22	30	496	568	712	789		
BA4603	30	40	660	754	805	789		
BA4604	37	50	798	831	805	789		
BA4605	45	60	850	831	805	789		
BA4606	55	75	871	848	816	797		
BA5601	75	100	1785	1743	1689	1657		
BA5602	90	125	1785	1743	1688	1657		
BA6601	110	150	2084	2036	1978			
				1	•			

223 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting		Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

Table 12-12 Losses @ 35°C (95°F) ambient for size 4 to 6 E12/54 drives

Model	Nomina	l rating	Drive losses (W) takin	g into consideration ar	ny current derating for	the given conditions
Wodei	kW	hp	3kHz	4kHz	6kHz	8kHz
BA4201-E12/54	18.5	25	520	540	590	640
BA4202-E12/54	22	30	610	640	690	750
BA4203-E12/54	30	40	810	850	920	990
BA5201-E12/54	37	50	1250	1340	1540	1730
BA5202-E12/54	45	60	1500	1620	1840	2000
BA4401-E12/54	37	50	710	780	910	1050
BA4402-E12/54	45	60	880	960	1120	1100
BA4403-E12/54	55	75	1070	11	60	1110
BA5401-E12/54	75	100	1470	1620	1910	2210
BA5402-E12/54	90	125	1830	2010	2360	2260
BA6401-E12/54	110	150	2300	2560	3090	
BA6402-E12/54	132	200	2680	3030	3720	
BA4601-E12/54	18.5	25	410	470	590	710
BA4602-E12/54	22	30	500	570	710	860
BA4603-E12/54	30	40	660	750	940	990
BA4604-E12/54	37	50	800	910	1010	990
BA4605-E12/54	45	60	990	1050	1010	990
BA4606-E12/54	55	75	1060	1070	1030	1010
BA5601-E12/54	75	100	1820	2130	2090	2050
BA5602-E12/54	90	125	2180	2150	2090	2050
BA6601-E12/54	110	150	2720	3200	3870	
BA6602-E12/54	132	175	3180	3730	3870	

Table 12-13 Losses @ 40°C (104°F) ambient for size 4 to 6 E12/54 drives

Model	Nominal	rating	Drive losses (W) takir	ng into consideration an	y current derating for t	he given conditi
Wodei	kW	hp	3kHz	4kHz	6kHz	8kHz
BA4201-E12/54	18.5	25	520	540	590	640
BA4202-E12/54	22	30	610	640	690	750
BA4203-E12/54	30	40	750	780	850	910
BA5201-E12/54	37	50	1250	1340	1540	1650
BA5202-E12/54	45	60	1500	1620	1720	1650
BA4401-E12/54	37	50	710	780	910	1050
BA4402-E12/54	45	60	880	960	1110	1070
BA4403-E12/54	55	75	980	1060	1130	1090
BA5401-E12/54	75	100	1470	1620	1640	1570
BA5402-E12/54	90	125	1800	1730	1640	1570
BA6401-E12/54	110	150	2300	2560	2680	
BA6402-E12/54	132	200	2680	2760	2610	
BA4601-E12/54	18.5	25	410	470	590	710
BA4602-E12/54	22	30	500	570	710	860
BA4603-E12/54	30	40	660	750	940	970
BA4604-E12/54	37	50	800	910	990	970
BA4605-E12/54	45	60	990	1020	990	970
BA4606-E12/54	55	75	1060	1050	1010	980
BA5601-E12/54	75	100	1520	1490	1440	1410
BA5602-E12/54	90	125	1520	1490	1440	1410
BA6601-E12/54	110	150	2540	2480	2400	
BA6602-E12/54	132	175	2540	2480	2400	

224 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

Table 12-14 Losses @ 45°C (113°F) ambient for size 4 to 6 E12/54 drives

Model	Nominal	rating	Drive losses (W) takir	ng into consideration an	y current derating for	the given conditions
Wodel	kW	hp	3kHz	4kHz	6kHz	8kHz
BA4201-E12/54	18.5	25	430	450	490	530
BA4202-E12/54	22	30	520	540	590	640
BA4203-E12/54	30	40	610	640	690	750
BA5201-E12/54	37	50	1000	1080	1240	1400
BA5202-E12/54	45	60	1250	1340	1430	1340
BA4401-E12/54	37	50	630	690	810	930
BA4402-E12/54	45	60	780	850	1000	1070
BA4403-E12/54	55	75	980	1060	1130	1090
BA5401-E12/54	75	100	1310	1450	1640	1570
BA5402-E12/54	90	125	168	80	1550	1520
BA6401-E12/54	110	150	2000	2240	2680	
BA6402-E12/54	132	200	2380	2690	2610	
BA4601-E12/54	18.5	25	360	410	520	630
BA4602-E12/54	22	30	410	470	590	710
BA4603-E12/54	30	40	500	570	710	860
BA4604-E12/54	37	50	660	750	940	970
BA4605-E12/54	45	60	800	910	990	970
BA4606-E12/54	55	75	870	990	1010	980
BA5601-E12/54	75	100	1350	1490	1440	1410
BA5602-E12/54	90	125	1520	1490	1440	1410
BA6601-E12/54	110	150	2130	2480	2400	
BA6602-E12/54	132	175	2540	2480	2400	

Table 12-15 Power losses from the front of the drive when through-panel mounted

Frame size	Power loss
1	≤50W
2	≤75W
3	≤100W
4	≤204W
5	≤347W
6	≤480W

12.1.3 Supply requirements

Voltage:

BAX2XX 200V to 240V ±10% BAX4XX 380V to 480V ±10% **BAX5XX** 500V to 575V ±10% 500V to 690V ±10% **BAX6XX**

Number of phases: 3Maximum supply imbalance: 2% negative phase sequence (equivalent to 3% voltage imbalance between phases).

Frequency range: 48 to 65 Hz

For UL compliance only, the maximum supply symmetrical fault current must be limited to 100kA

Size 6 heatsink fan supply requirements

Nominal voltage: 24V Minimum voltage: 23.5V 27V Maximum voltage: Current drawn: 3.3A

Recommended power supply: 24V, 100W, 4.5A

Recommended fuse: 4A fast blow (I²t less than 20A²s)

12.1.4 Line reactors

Input line reactors reduce the risk of damage to the drive resulting from poor phase balance or severe disturbances on the supply network.

Where line reactors are to be used, reactance values of approximately 2% are recommended. Higher values may be used if necessary, but may result in a loss of drive output (reduced torque at high speed) because of the voltage drop.

For all drive ratings, 2% line reactors permit drives to be used with a supply unbalance of up to 3.5% negative phase sequence (equivalent to 5% voltage imbalance between phases).

Severe disturbances may be caused by the following factors, for example:

- Power factor correction equipment connected close to the drive.
- Large DC drives having no or inadequate line reactors connected to the supply.
- Across the line (DOL) started motor(s) connected to the supply such that when any of these motors are started, the voltage dip exceeds

Such disturbances may cause excessive peak currents to flow in the input power circuit of the drive. This may cause nuisance tripping, or in extreme cases, failure of the drive.

Drives of low power rating may also be susceptible to disturbance when connected to supplies with a high rated capacity.

Line reactors are particularly recommended for use with the following drive models when one of the above factors exists, or when the supply capacity exceeds 175kVA:

BA1201 BA1202 BA1203 BA1204 BA1401 BA1402 BA1403 BA1404

Model sizes BA1405 to BA4606 have an internal DC choke and BA5201 to BA6602 have internal AC line chokes, so they do not require AC line reactors except for cases of excessive phase unbalance or extreme supply conditions.

When required each drive must have its own reactor(s). Three individual reactors or a single three-phase reactor should be used.

Reactor current ratings

The current rating of the line reactors should be as follows:

Continuous current rating:

Not less than the continuous input current rating of the drive

Repetitive peak current rating:

Not less than twice the continuous input current rating of the drive

Safety Product Mechanical Electrical Running UL Listing Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the moto operation parameters Data Information

12.1.5 **Motor requirements**

No. of phases: 3

Maximum voltage:

Affinity (200V): 240V Affinity (400V): 480V Affinity (575V): 575V Affinity (690V): 690V

Temperature, humidity and cooling method

Ambient temperature operating range:

0°C to 50°C (32°F to 122°F).

Output current derating must be applied at the following ambient temperatures:

>40°C (104°F) - Size 1 to 6 standard drive and size 1 to 3 E12/ E54 drive

>35°C (95°F) - Size 4 to 6 E12/E54 drive

Minimum temperature at power-up:

-15°C (5°F), the supply must be cycled when the drive has warmed up to 0°C (32°F).

Cooling method: Forced convection

Maximum humidity: 95% non-condensing at 40°C (104°F)

12.1.7 Storage

 -40° C (-40° F) to $+50^{\circ}$ C (122° F) for long term storage, or to $+70^{\circ}$ C (158°F) for short term storage.

12.1.8 **Altitude**

Altitude range: 0 to 3,000m (9,900 ft), subject to the following conditions: 1.000m to 3.000m (3.300 ft to 9.900 ft) above sea level; de-rate the maximum output current from the specified figure by 1% per 100m (330 ft) above 1,000m (3,300 ft)

For example at 3,000m (9,900ft) the output current of the drive would have to be de-rated by 20%.

Environmental Protection Rating

The standard drives are rated to IP20/NEMA1. Drive sizes 1 to 3 conform to UL Type 1 and sizes 4 to 6 are Open Class. If the optional conduit box is installed (see section 3.5 Mounting methods on page 27), then sizes 4 to 6 conform to UL Type 1.

The E12/E54 drives are rated to IP54/NEMA12 and conform to UL Type 12.

The standard drive can be configured to increase its protection rating to IP54/NEMA 12 for through-panel mounting (refer to section 3.8 Enclosing standard drive for high environmental protection on page 47).

The IP rating of a product is a measure of protection against ingress and contact to foreign bodies and water. It is stated as IP XX, where the two digits (XX) indicate the degree of protection provided as shown in Table 12-16.

Table 12-16 IP Rating degrees of protection

_			
	First digit		Second digit
	otection against contact and gress of foreign bodies	Pr	otection against ingress of water
0	No protection	0	No protection
1	Protection against large foreign bodies φ > 50mm (large area contact with the hand)	1	Protection against vertically falling drops of water
2	Protection against medium size foreign bodies ϕ > 12mm (finger)	2	Protection against spraywater (up to 15° from the vertical)
3	Protection against small foreign bodies φ > 2.5mm (tools, wires)	3	Protection against spraywater (up to 60° from the vertical)
4	Protection against granular foreign bodies ϕ > 1mm (tools, wires)	4	Protection against splashwater (from all directions)
5	Protection against dust deposit, complete protection against accidental contact.	5	Protection against heavy splash water (from all directions, at high pressure)
6	Protection against dust ingress, complete protection against accidental contact.	6	Protection against deckwater (e.g. in heavy seas)
7	-	7	Protection against immersion
8	-	8	Protection against submersion

Table 12-17 UL / NEMA enclosure ratings

UL Type / NEMA rating	Description
1	Enclosures are intended for indoor use, primarily to provide a degree of protection against limited amounts of falling dirt.
12	Enclosures are intended for indoor use, primarily to provide a degree of protection against dust, falling dirt and dripping non-corrosive liquids.

Corrosive gasses 12.1.10

Concentrations of corrosive gases must not exceed the levels given in:

- Table A2 of EN 50178
- Class 3C2 of IEC 60721-3-3

This corresponds to the levels typical of urban areas with industrial activities and/or heavy traffic, but not in the immediate neighbourhood of industrial sources with chemical emissions.

12.1.11 Vibration

Maximum recommended continuous vibration level 0.14 g r.m.s. broadband 5 to 200 Hz.

NOTE

This is the limit for broad-band (random) vibration. Narrow-band vibration at this level which coincides with a structural resonance could result in premature failure.

Bump Test

Testing in each of three mutually perpendicular axes in turn.

Referenced standard:IEC 60068-2-29: Test Eb:

Severity: 18g (size 1 to 3), 6ms, half sine

10g (size 4 to 6), 6ms, half sine

No. of Bumps: 600 (100 in each direction of each axis)

Random Vibration Test

Testing in each of three mutually perpendicular axes in turn.

Referenced standard:IEC 60068-2-64: Test Fh:

Severity: 1.0 m²/s³ (0.01 q²/Hz) ASD from 5 to 20 Hz

-3 dB/octave from 20 to 200 Hz

Duration: 30 minutes in each of 3 mutually perpendicular axes.

Safety	Product Information	Mechanical	Electrical	Getting	Basic	Running the motor	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor		operation		parameters	Data	3	Information

Sinusoidal Vibration Test

Testing in each of three mutually perpendicular axes in turn.

Referenced standard: IEC 60068-2-6: Test Fc:

Frequency range: 5 to 500 Hz

Severity: 3.5 mm peak displacement from 5 to 9 Hz

10 m/s² peak acceleration from 9 to 200 Hz 15 m/s² peak acceleration from 200 to 500 Hz

Sweep rate: 1 octave/minute

Duration: 15 minutes in each of 3 mutually perpendicular axes.

12.1.12 Starts per hour

By electronic control: unlimited

By interrupting the AC supply: ≤20 (equally spaced)

12.1.13 Start up time

This is the time taken from the moment of applying power to the drive, to the drive being ready to run the motor:

Sizes 1 to 6: 4s

12.1.14 Output frequency / speed range

Open-loop frequency range: 0 to 3,000Hz RFC speed range: 0 to 40,000rpm RFC frequency range: 0 to 1,250Hz* *(Limit to ~400Hz for good performance)

12.1.15 Accuracy and resolution

Speed:

The absolute frequency and speed accuracy depends on the accuracy of the crystal used with the drive microprocessor. The accuracy of the crystal is 100ppm, and so the absolute frequency/speed accuracy is 100ppm (0.01%) of the reference, when a preset speed is used. If an analog input is used the absolute accuracy is further limited by the absolute accuracy of the analog input.

The following data applies to the drive only; it does not include the performance of the source of the control signals.

Open loop resolution:

Preset frequency reference: 0.1Hz
Precision frequency reference: 0.001Hz

RFC resolution

Preset speed reference: 0.1rpm
Precision speed reference: 0.001rpm
Analog input 1: 16bit plus sign
Analog input 2: 10bit plus sign

Current:

The resolution of the current feedback is 10bit plus sign. The typical accuracy of the current feedback is 2%.

12.1.16 Acoustic noise

The heatsink fan generates the majority of the acoustic noise produced by the drive. The heatsink fan on size 1 and 2 is a dual speed fan and on size 3 to 6 it is a variable speed fan. The drive controls the speed at which the fan runs based on the temperature of the heatsink and the drive's thermal model system. On size 4 to 6 the minimum speed of the heatsink fan is 0 rpm. The size 3 to 6 is also installed with a variable speed fan to ventilate the capacitor bank.

Table 12-18 gives the acoustic noise produced by the drive for the heatsink fan running at the maximum and minimum speeds.

Table 12-18 Acoustic noise data for wall mounted drives

Size	Max speed SPL dBA @ 1m	Min speed dBA
1	48	28
2	54	35
3	56	43
4	53	
5	72	
6	72	

12.1.17 Overall dimensions

Height including surface mounting brackets

W Width

D Projection forward of panel when surface mounted
F Projection forward of panel when through-panel mounted

R Projection rear of panel when through-panel mounted

Table 12-19 Overall standard drive dimensions

Ī	Size			Dimension		
	Size	Н	W	D	F	R
	0	322mm (12.677in)	62mm (2.441in)	226mm (8.898in)		
	1	386mm (15.197in)	100mm (3.937in)	219mm	139mm	≤80mm
	2	389mm	155mm (6.102in)	(8.622in)	(5.472in)	(3.150in)
	3	(15.315in)	250mm (9.843in)	260mm (10.236in)	140mm (5.512in)	≤120mm (4.724in)
	4	547mm (21.528in)				
	5	858mm (33.752in)	310mm (12.205in)	298mm (11.732in)	200mm (7.874in)	≤98mm (3.858in)
	6	1169mm (46.016in)				

Table 12-20 Overall wall mounted standard drive dimensions with conduit box installed

Size		Dimension	
Size	Н	W	D
1	473mm (18.612in)	100mm (3.937in)	219mm
2	468mm (18.425in)	155mm (6.102in)	(8.622in)
3	551mm (21.698in)	250mm (9.843in)	260mm (10.236in)
4	839mm (33.046in)		
5	1150mm (45.27in)	310mm (12.205in)	298mm (11.732in)
6	1460mm (57.467in)		

Table 12-21 Overall E12/E54 drive dimensions

Size		Dimension	
Size	Н	W	D
1	560.1mm	184.0mm	263.7mm
	(22.05in)	(7.24in)	(10.38in)
2	552.3mm	236.0mm	261.9mm
	(21.74in)	(9.29in)	(10.31in)
3	543.6mm	331.3mm	302mm
	(21.40in)	(13.04in)	(11.89in)
4	703mm	386mm	346mm
	(27.7in)	(15.2in)	(13.6in)
5	1211mm	416mm	347mm
	(14.7in)	(16.4in)	(13.7in)
6	1522mm	416mm	348mm
	(60in)	(16.4in)	(13.7in)

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

12.1.18 Weights

Table 12-22 Overall drive weights

Size	Model	kg	lb
1	BA1201 to BA1204, BA1401 to BA1404	5	11.0
	BA1405 and BA1406	5.8	12.8
2	All	7	15.4
3	All	15	33.1
4	All	30	66.1
5	All	55	121.3
6	All	75	165.3

Table 12-23 Overall E12/E54 drive weights

Size	kg	lb
1	9	20
2	12	26.5
3	25	55
4	40	88
5	70	154
6	90	198

12.1.19 Input current, fuse and cable size ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in Table 12-24.

Table 12-24 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
All	100

		Maximum	Europear	n cable size l	EN60204	USA cal	ble size UL5	08C
Model	Typical input current	continuous input current	Fuse rating IEC gG	Input	Output	Fuse rating Class CC <30A Class J >30A	Input	Output
	Α	Α	Α	mm ²	mm ²	Α	AWG	AWG
BA1201	7.1	9.5	10	1.5	1.0	10	14	18
BA1202	9.2	11.3	12	1.5	1.0	15	14	16
BA1203	12.5	16.4	20	4.0	1.0	20	12	14
BA1204	15.4	19.1	20	4.0	1.5	20	12	14
BA2201	13.4	18.1	20	4.0	2.5	20	12	14
BA2202	18.2	22.6	25	4.0	4.0	25	10	10
BA2203	24.2	28.3	32	6.0	6.0	30	8	8
BA3201	35.4	43.1	50	16	16	45	6	6
BA3202	46.8	54.3	63	25	25	60	4	4
BA1401	4.1	4.8	8	1.0	1.0	8	16	22
BA1402	5.1	5.8	8	1.0	1.0	8	16	20
BA1403	6.8	7.4	8	1.0	1.0	10	16	18
BA1404	9.3	10.6	12	1.5	1.0	15	14	16
BA1405	10	11	12	1.5	1.0	15	14	14
BA1406	12.6	13.4	16	2.5	1.5	15	14	14
BA2401	15.7	17	20	4.0	2.5	20	12	14
BA2402	20.2	21.4	25	4.0	4.0	25	10	10
BA2403	26.6	27.6	32	6.0	6.0	30	8	8
BA3401	34.2	36.2	40	10	10	40	6	6
BA3402	40.2	42.7	50	16	16	45	6	6
BA3403	51.3	53.5	63	25	25	60	4	4
BA3501	5.0	6.7	8	1.0	1.0	10	16	18
BA3502	6.0	8.2	10	1.0	1.0	10	16	16
BA3503	7.8	11.1	12	1.5	1.0	15	14	14
BA3504	9.9	14.4	16	2.5	1.5	15	14	14
BA3505	13.8	18.1	20	4.0	2.5	20	12	14
BA3506	18.2	22.2	25	4.0	4.0	25	10	10
BA3507	22.2	26.0	32	6.0	6.0	30	8.0	8.0

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40°C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit).

Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower.

The recommended cable sizes above are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

228 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC tools	parameters	Data	Diagnostics	Information

Table 12-26 Size 4 and larger input current, fuse and cable size ratings

	Typical input	Maximum	Fuse o	option 1	semiconducto	ption 2 r fuse in series se or breaker	Cable size				
Model	current	input current	IEC class gR	North America: Ferraz HSJ	HRC IEC class gG UL class J	Semi- conductor IEC class aR	EN6	EN60204 UI		UL508C	
	Α	Α	Α	Α	Α	Α	Input mm ²	Output mm ²	Input AWG	Output AWG	
BA4201	62.1	68.9	100	90	90	160	25	25	3	3	
BA4202	72.1	78.1	100	100	100	160	35	35	3	3	
BA4203	94.5	99.9	125	125	125	200	70	70	1	1	
BA5201	116	142	200	175	160	200	95	95	2/0	2/0	
BA5202	137	165	250	225	200	250	120	120	4/0	4/0	
BA4401	61.2	62.3	80	80	80	160	25	25	3	3	
BA4402	76.3	79.6	110	110	100	200	35	35	2	2	
BA4403	94.1	97.2	125	125	125	200	70	70	1	1	
BA5401	126	131	200	175	160	200	95	95	2/0	2/0	
BA5402	152	156	250	225	200	250	120	120	4/0	4/0	
BA6401	206	215	250	250	250	315	2 x 70	2 x 70	2 x 2/0	2 x 2/0	
BA6402	247	258	315	300	300	350	2 x 95	2 x 95	2 x 4/0	2 x 4/0	
BA4601	23	26.5	63	60	32	125	4	4	10	10	
BA4602	26.1	28.8	63	60	40	125	6	6	8	8	
BA4603	32.9	35.1	63	60	50	125	10	10	8	8	
BA4604	39	41	63	60	50	125	16	16	6	6	
BA4605	46.2	47.9	63	60	63	125	16	16	6	6	
BA4606	55.2	56.9	80	60	63	125	25	25	4	4	
BA5601	75.5	82.6	125	100	90	160	35	35	2	2	
BA5602	89.1	94.8	125	100	125	160	50	50	1	1	
BA6601	128	139	160	175	150	315	2 x 50	2 x 50	2 x 1	2 x 1	
BA6602	144	155	160	175	160	315	2 x 50	2 x 50	2 x 1	2 x 1	

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40°C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit).

Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower.

The recommended cable sizes above are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

Inrush current

The drive will have an inrush current during power-up, the peak inrush is limited to the value shown below:

BA120X	18 A peak
BA140X	35 A peak
BA220X	12 A peak
BA240X	24 A peak
BA320X	8 A peak
BA340X	14 A peak
BA350X	18 A neak

For sizes 4 to 6, the inrush current is limited by a controlled rectifier to below the rated current of the drive.

The inrush current for all drives after a brown-out can be larger than the power-up inrush.

12.1.20 Maximum motor cable lengths

Table 12-27 Maximum motor cable lengths (200V drives)

	200	V Nomina	I AC supp	oly voltag	е						
Model	Maximu	•		notor cable length for each of ing frequencies							
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz					
BA1201											
BA1202	1	00m (330	ft)								
BA1203	130m	(425ft)				27					
BA1204					50m (165ft)	37m (120ft)					
BA2201	200m	150m	100m (330ft)	75m (245ft)		(12011)					
BA2202											
BA2203	(660ft)	(490ft)									
BA3201											
BA3202											
BA4201	050	405	405	00							
BA4202	250m (820ft)	185m (607ft)	125m (410ft)	90m (295ft)							
BA4203	(02011)	(00711)	(+1011)	(20011)							
BA5201	250m	185m	125m	90m							
BA5202	(820ft)	(607ft)	(410ft)	(295ft)							

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation	mormation	installation	installation	Started	parameters	the motor		operation		parameters	Data	•	iniormation

Table 12-28 Maximum motor cable lengths (400V drives)

	400	V Nomina	I AC supp	oly voltag	е	
	Maximu	•		or cable I	•	each of
Model		the	following	frequen	cies	
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
BA1401		65m ((210ft)			
BA1402	1	00m (330	ft)			
BA1403	130m	(425ft)				
BA1404						
BA1405						
BA1406					50m	37m
BA2401			100m	75m	(165ft)	(120ft)
BA2402	200m	150m	(330ft)	(245ft)	(10311)	
BA2403	(660ft)	(490ft)	(33011)			
BA3401						
BA3402						
BA3403						
BA4401						
BA4402				00		
BA4403	050	405	405	90m (295ft)		
BA5401	250m (820ft)	185m (607ft)	125m (410ft)	(23311)		
BA5402	(02011)	(00711)	(+1011)			
BA6401						
BA6402						

Table 12-29 Maximum motor cable lengths (575V drives)

575V Nominal AC supply voltage											
Model	Maximum permissible motor cable length for each of the following frequencies										
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz					
BA3501	-										
BA3502		450	100m (330ft)	75m (245ft)							
BA3503	200m										
BA3504	200m (660ft)	150m (490ft)									
BA3505	(ooon)	(49011)									
BA3506											
BA3507											

Table 12-30 Maximum motor cable lengths (690V drives)

690V Nominal AC supply voltage									
Maximum permissible motor cable length for each the following frequencies									
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz			
BA4601									
BA4602	1	185m	125m	90m (295ft)					
BA4603	1								
BA4604	1								
BA4605	250m								
BA4606	(820ft)	(607ft)	(410ft)						
BA5601									
BA5602									
BA6601									
BA6602	1								

Cable lengths in excess of the specified values may be used only when special techniques are adopted; refer to the supplier of the

The default switching frequency is 3kHz for Open-loop and RFC. The maximum cable length is reduced from that shown in Table 12-27 and Table 12-28 if high capacitance motor cables are used. For further information, refer to section High-capacitance cables on page 69.

12.1.21 **Braking resistor values**

Table 12-31 Minimum resistance values and peak power rating for the braking resistor at 40°C (104°F)

Model	Minimum resistance* Ω	Instantaneous power rating kW
BA1201 to 1203	43	3.5
BA1204	29	5.3
BA2201 to BA2203	18	8.9
BA3201 to BA3202	5	30.3
BA4201 to BA4203	5	30.3
BA5201 to BA5202	3.5	53
BA1401 to BA1404	74	8.3
BA1405 to BA1406	58	10.6
BA2401 to BA2403	19	33.1
BA3401 to BA3403	18	35.5
BA4401 to BA4402	11	55.3
BA4403	9	67.6
BA5401 to BA5402	7	86.9
BA6401 to BA6402	5	122
BA3501 to BA3507	18	50.7
BA4601 to BA4606	13	95
BA5601 to BA5602	10	125
BA6601 to BA6602	10	122

^{*} Resistor tolerance: ±10%

12.1.22 **Torque settings** Table 12-32 Drive control and relay terminal data

Model	Connection type	Torque setting
All	Plug-in terminal block	0.5 N m 0.4 lb ft

Table 12-33 Drive power terminal data

Model size	AC terminals	High current DC and braking	Low voltage DC	Ground terminal
1	Plug-in terminal block 1.5 N m (1.1 lb ft)	Terminal block 1.5 N m		
2		Terminal block (M5 screws) 1.5 N m (1.1 lb ft)	Terminal block (M4 screws) 1.5 N m	Stud (M5) 4.0 N m 2.9 lb ft
3	Terminal block 2.5 N m	k (M6 screws) 1.8 lb ft	(1.1 lb ft)	6.0 N m 4.4 lb ft
4	M10	stud		M10 stud
5	_	N m		15 N m
6	(11.1	lb ft)		(11.1 lb ft)
	Torq	ue tolerance		±10%

0-6-4	Decident	Marshauteat	Electrical	0 - 44'	D '	D		OMARTOARR		A -l l	Tabletoni		101 12-6
Safety	Product	iviecnanicai	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

Electromagnetic compatibility (EMC)

This is a summary of the EMC performance of the drive. For full details, refer to the EMC Data Sheet which can be obtained from the supplier of

Table 12-34 Immunity compliance

Standard	Type of immunity	Test specification	Application	Level
IEC61000-4-2 EN61000-4-2	Electrostatic discharge	6kV contact discharge 8kV air discharge	Module enclosure	Level 3 (industrial)
IEC61000-4-3 EN61000-4-3	Radio frequency radiated field	10V/m prior to modulation 80 - 1000MHz 80% AM (1kHz) modulation	Module enclosure	Level 3 (industrial)
IEC61000-4-4	Fast transient	5/50ns 2kV transient at 5kHz repetition frequency via coupling clamp	Control lines	Level 4 (industrial harsh)
EN61000-4-4	burst	5/50ns 2kV transient at 5kHz repetition frequency by direct injection	Power lines	Level 3 (industrial)
		Common mode 4kV 1.2/50μs waveshape	AC supply lines: line to ground	Level 4
IEC61000-4-5 EN61000-4-5	Surges	Differential mode 2kV 1.2/50µs waveshape	AC supply lines: line to line	Level 3
		Lines to ground	Signal ports to ground ¹	Level 2
IEC61000-4-6 EN61000-4-6	Conducted radio frequency	10V prior to modulation 0.15 - 80MHz 80% AM (1kHz) modulation	Control and power lines	Level 3 (industrial)
IEC61000-4-11 EN61000-4-11	Voltage dips and interruptions	-30% 10ms +60% 100ms -60% 1s <-95% 5s	AC power ports	
EN50082-1 IEC61000-6-1 EN61000-6-1		nity standard for the nmercial and light - onment		Complies
EN50082-2 IEC61000-6-2 EN61000-6-2	Generic immur industrial envir	nity standard for the conment		Complies
EN61800-3 IEC61800-3 EN61800-3	Product standa speed power d (immunity requ	Meets immunity requirements for first and second environments		

¹ See section Surge immunity of control circuits - long cables and connections outside a building on page 79 for control ports for possible requirements regarding grounding and external surge protection

Emission

The drive contains an in-built filter for basic emission control. An additional optional external filter provides further reduction of emission. The requirements of the following standards are met, depending on the motor cable length and switching frequency.

Table 12-35 Size 1 emission compliance

Motor cable	Switching frequency (kHz)								
length (m)	3	4	6	8	12	16			
Using internal filter:									
0 to 4	E2U	E2U E2R							
>4	E2R								
Using internal filter and external ferrite ring:									
0 to 10		E2U		E2R					
> 10			E2	2R					
Using external	filter:								
0 to 25		R I							
25 to 75		ı							
75 to 100									

Table 12-36 Size 2 emission compliance

Motor cable		Switching frequency (kHz)								
length (m)	3	4	6	8	12	16				
Using internal filter:										
Any			E2	2R						
Using internal filter and external ferrite ring:										
0 to 4		E2U E2R								
4 to 10	E2U			E2R						
> 10			E2	2R						
Using external	filter:									
0 to 25		R								
25 to 75	ı									
75 to 100		l								

Table 12-37 Size 3 emission compliance

Motor cable		Switching frequency (kHz)								
length (m)	3	4	6	8	12					
Using internal filter:										
Any		E2R								
Using external filt	er:									
0 to 20	R			l						
20 to 50										
50 to 75		l l								
75 to 100	I									

Table 12-38 Size 4 (200V & 400V) emission compliance

Motor cable length	Switching frequency (kHz)								
(m)	3	4	6	8					
Using internal filter:		•	•	•					
Any		E	2R						
Using external filter:									
0 to 25									
25 to 50									
50 to 75			E2U						
75 to 100			E2U						

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	DC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

Table 12-39 Size 4 (690V) emission compliance

Motor cable length	Switching frequency (kHz)							
(m)	3	3 4 6						
Using internal filter:		•						
Any	E2R							
Using external filter:								
0 to 25			I					
25 to 50			E:	2U				
50 to 75			E:	2U				
75 to 100			E:	2U				

Table 12-40 Size 5 (400V) emission compliance

Motor cable length	Switching frequency (kHz)							
(m)	3	3 4 6						
Using internal filter:		•	•	•				
100		E:	2U					
Using external filter:								
0 to 100			I					

Table 12-41 Size 5 (690V) emission compliance

Motor cable length	Switching frequency (kHz)							
(m)	3	4	6	8				
Using internal filter:			•					
100		E	2R					
Using external filter:								
0 to 25								
0 to 100		[

Table 12-42 Size 6 (400V only) emission compliance

Motor cable length (m)	Switching frequency (kHz)						
wotor cable length (III)	3	4	6				
Using internal filter:							
0 to 100		E2U					
100 to max*		E2R					
Using external filter:							
0 to 100		I					

^{*}Refer to section 12.1.20 Maximum motor cable lengths on page 229.

Table 40.42 Circ C (COO)/ anh.) aminging compliance

Table 12-43 Size 6 (690	v only) emiss	ion compilance	e					
Motor cable length (m)	Switching frequency (kHz)							
Wotor Cable length (III)	3	4	6					
Using internal filter:								
0 to 100		E2U						
100 to max*		E2R						
Using external filter:								
0 to 25		I						
0 to 100		Do no	ot use					

^{*}Refer to section 12.1.20 Maximum motor cable lengths on page 229.

Key (shown in decreasing order of permitted emission level):

E2R EN 61800-3 second environment, restricted distribution (Additional measures may be required to prevent interference)

E2U EN 61800-3 second environment, unrestricted distribution

Industrial generic standard EN 50081-2 (EN 61000-6-4) EN 61800-3 first environment restricted distribution (The following caution is required by EN 61800-3)

This is a product of the restricted distribution class according to IEC 61800-3. In a residential environment this product may cause radio interference in which case the user may be CAUTION required to take adequate measures.

R Residential generic standard EN 50081-1 (EN 61000-6-3) EN 61800-3 first environment unrestricted distribution

EN 61800-3 defines the following:

- The first environment is one that includes residential premises. It also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for residential purposes.
- The second environment is one that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for residential purposes.
- Restricted distribution is defined as a mode of sales distribution in which the manufacturer restricts the supply of equipment to suppliers, customers or users who separately or jointly have technical competence in the EMC requirements of the application of

12.2 **Optional external EMC filters**

Table 12-44 EMC filter cross reference

Drive	Schaffner	Epcos
Drive	CT part no.	CT part no.
BA1201 to BA1202	4200-6118	4200-6121
BA1203 to BA1204	4200-6119	4200-6120
BA2201 to BA2203	4200-6210	4200-6211
BA3201 to BA3202	4200-6307	4200-6306
BA4201 to BA4203	4200-6406	4200-6405
BA5201 to BA5202	4200-6503	4200-6501
BA1401 to BA1404	4200-6118	4200-6121
BA1405 to BA1406	4200-6119	4200-6120
BA2401 to BA2403	4200-6210	4200-6211
BA3401 to BA3403	4200-6305	4200-6306
BA4401 to BA4403	4200-6406	4200-6405
BA5401 to BA5402	4200-6503	4200-6501
BA6401 to BA6402	4200-6603	4200-6601
BA3501 to BA3507	4200-6309	4200-6308
BA4601 to BA4606	4200-6408	4200-6407
BA5601 to BA5602	4200-6504	4200-6502
BA6601 to BA6602	4200-6604	4200-6602

I	Safety	Product	Mechanical	Electrical Installation	Getting	Basic	Running the motor	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	parameters	the motor		operation		parameters	Data	. 3	Information

12.2.1 **EMC** filter ratings

Table 12-45 Optional external EMC filter details

		_	mum	Voltage		Power	Ground leaka	ige	
CT part number	Manufacturer	@ 40°C (104°F) A	@ 50°C (122°F) A	rating V	IP rating	dissipation at rated current W	Balanced supply phase-to-phase and phase-to-ground mA	Worst case mA	Discharge resistors
4200-6118		10	10			6.9	29.4	153	
4200-6119		16	16	480		9.2	38.8	277	
4200-6210		32	28.2	400		11	38.0	206	See Note 1
4200-6305		62	56.6			23	66.0	357	
4200-6307		75	68.5	240	20	29	24.0	170	
4200-6309	Schaffner	30	30	575	20	15	102.0	557	See Note 3
4200-6406	Schainlei	101	92.2	480		25	73.0	406	See Note 1
4200-6408		58	52.8	690		31	66.0	344	See Note 1
4200-6503		164	150	480		30	39.1	216	See Note 4
4200-6504		95	86.7	690		30	66.0	344	
4200-6603		260	237	480	00	14.2	41.0	219	See Note 1
4200-6604		160	146	690	00	5.4	88.5	296	
4200-6121		10	9.1			4.2			
4200-6120		16	14.6	480		10.8	<30.0	186.5	
4200-6211		32	29.1	400		17.8	- \30.0		See Note 2
4200-6306		75	68.3	1		19.4		238	See Note 2
4200-6308		30	22.5	660	20	17.6	<35.0	230	
4200-6405	Epcos	101	75	480		30	<30.0	180	
4200-6407		58	44	690		15	<40.0	<340	See Note 5
4200-6501		165	125	480		27	<20.0	<120	See Note 2
4200-6502		95	71	690		19	<55.0	<450	
4200-6601		260	195	480	00	13	<45.0	<375	See Note 5
4200-6602		160	120	690	00	5	<60.0	<520	

- 1. $1M\Omega$ in a L connection between phases, with the L point connected by a $680k\Omega$ resistor to ground (i.e. line to line $2M\Omega$, line to ground $1.68M\Omega$)
- 2. $1M\Omega$ in a \downarrow connection between phases, with the \downarrow point connected by a $1.5M\Omega$ resistor to ground (i.e. line to line $2M\Omega$, line to ground $2.5M\Omega$)
- 3. $2M\Omega$ between phases with each phase connected by a $660k\Omega$ resistance to ground.
- 4. 1.5M Ω in a \curlywedge connection between phases, with the \dotplus point connected by a 680k Ω resistor to ground (i.e. line to line 3M Ω , line to ground 2.18M Ω)
- 5. $1.8M\Omega$ in a \downarrow connection between phases, with the \downarrow point connected by a $1.5M\Omega$ resistor to ground (i.e. line to line $3.6M\Omega$, line to ground $3.3M\Omega$)

Safety	Product	Mechanical	Electrical	Getting		Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

12.2.2 **Overall EMC filter dimensions**

Table 12-46 Optional external EMC filter dimensions

CT part	Manufacturer		Dimension		We	ight
number	Manufacturer	Н	W	D	kg	lb
4200-6118		440 mm (17.323 in)	100 mm (3.937 in)	45 mm (1.772in)	1.4	3.1
4200-6119		440 11111 (17.323 111)	100 11111 (3.937 111)	45 11111 (1.772111)	1.4	3.1
4200-6210		428.5 mm (16.870 in)	155 mm (6.102 in)	55 mm (2.165 in)	2	4.4
4200-6305						
4200-6307		414 mm (16.299 in)	250 mm (9.842 in)	60 mm (2.362 in)	3.5	7.7
4200-6309	Schaffner					
4200-6406	Schainei		225 mm (8.858 in)	100 mm (3.937 in)	4	8.8
4200-6408		200 mm (11 911 in)	208 mm (8.189 in)	100 11111 (3.937 111)	3.8	8.4
4200-6503		300 mm (11.811 in)	249 mm (9.803 in)	120 mm (4.724 in)	6.8	15
4200-6504			225 mm (8.858 in)	100 mm (3.937 in)	4.4	9.7
4200-6603		295 mm (11.614 in)	230 mm (9.055 in)	136 mm (5.354 in)	5.25	11.6
4200-6604		357 mm (14.055 in)	230 11111 (9.055 111)	130 11111 (3.334 111)	5.25	11.0
4200-6121		450 mm (17.717 in)	100 mm (3.937 in)	45 mm (1.772 in)	2.1	4.6
4200-6120		450 11111 (17.7 17 111)	100 11111 (3.937 111)	45 11111 (1.772 111)	2.1	4.0
4200-6211		431.5 mm (16.988 in)	155 mm (6.102 in)	55 mm (2.165 in)	3.3	7.3
4200-6306		425 mm (16.732 in)	250 mm (9.843 in)	60 mm (2.362 in)	5.1	11.2
4200-6308		423 11111 (10.732 111)	250 11111 (9.045 111)	00 111111 (2.302 111)	5.1	11.2
4200-6405	Epcos		207 mm (8.150 in)	90 mm (3.543 in)	7.8	17.2
4200-6407		300 mm (11 811 in)	205 mm (8.071 in)	— 90 IIIII (3.343 III)	8.0	17.6
4200-6501		300 mm (11.811 in)	249 mm (9.803 in)	120 mm (4.724 in)	12.0	26.5
4200-6502			249 111111 (9.003 111)	120 111111 (4.724 111)	10.0	22.0
4200-6601		364 mm (14.331 in)	230 mm (9.055 in)	147 mm (5.787 in)	8.6	19.0
4200-6602		304 11111 (14.331 111)	250 11111 (9.055 111)	147 111111 (3.767 111)	0.0	19.0

EMC filter torque settings 12.2.3

Optional external EMC Filter terminal data

CT part	Manufacturer	Power con	nections	Ground co	nnections
number	Manufacturer	Max cable size	Max torque	Ground stud size	Max torque
4200-6118		4mm ² 12AWG	0.8 N m (0.6 lb ft)		
4200-6119			0.014111 (0.01011)	M5	3.5 N m (2.6 lb ft)
4200-6210		10mm ² 8AWG	2.0 N m (1.5 lb ft)		
4200-6305					
4200-6307	1	16mm ² 6AWG	2.2 N m (1.6 lb ft)	M6	3.9 N m (2.9 lb ft)
4200-6309]				
4200-6406	Schaffner	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)
4200-6408	Ī	25mm ² 4AWG	2.3 N m (1.7 lb ft)	M6	3.9 N m (2.9 lb ft)
4200-6503	Ī	95mm ² 4/0AWG	20 N m (14.7 lb ft)		
4200-6504	Ī	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)
4200-6603	1				2011111 (10.11511)
4200-6604	1				
4200-6120		4mm ² 12AWG	0.6 N m (0.4 lb ft)		
4200-6121		4111111 12AVVG	0.0 14 111 (0.4 15 11)	M5	3.0 N m (2.2 lb ft)
4200-6211		10mm ² 8AWG	1.35 N m (1.0 lb ft)		
4200-6306	Ī	16mm ² 6AWG	2.2 N m (1.6 lb ft)	M6	5.1 N m (3.8 lb ft)
4200-6308		10mm ² 8AWG	1.35 N m (1.0 lb ft)	IVIO	5.1 N III (3.6 ID II)
4200-6405	Epcos	50mm ² 0AWG	6.8 N m (5.0 lb ft)		
4200-6407	1	SUMME DAVVG	0.0 14 111 (3.0 10 11)		
4200-6501		95mm ² 4/0AWG	20 N m (14.7 lb ft)	M10	10 N m (7.4 lb ft)
4200-6502		JOHIN 4/UAVVG	2014111 (14.7 1010)	WITO	10 14 111 (1.4 10 10)
4200-6601					
4200-6602					

234 Affinity User Guide Issue Number: 3

Safety	Product	Mechanical	Electrical	Gettina	Basic	Running		SMARTCARD		Advanced	Technical		UL Listina
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

13 **Diagnostics**

The display on the drive gives various information about the status of the drive. These fall into three categories:

- Trip indications
- Alarm indications
- Status indications

Users must not attempt to repair a drive if it is faulty, nor carry out fault diagnosis other than through the use of the diagnostic features described in this chapter.

If a drive is faulty, it must be returned to an authorized Control Techniques distributor for repair.

13.1 **Trip indications**

If the drive trips, the output of the drive is disabled so that the drive stops controlling the motor. The display indicates that a trip has occurred and shows the trip. If this is a multi-module drive and a power module has indicated a trip, then the display will alternate between the trip string and

Trips are listed alphabetically in Table 13-1 based on the trip indication shown on the drive display. Refer to Figure 13-1.

If a display is not used, the drive LED Status indicator will flash if the drive has tripped. Refer to Figure 13-2.

The trip indication can be read in Pr 10.20 providing a trip number. Trip numbers are listed in numerical order in Table 13-2 so the trip indication can be cross referenced and then diagnosed using Table 13-1.

Example

- 1. Trip code 3 is read from Pr 10.20 via serial communications.
- Checking Table 13-2 shows Trip 3 is an OI.AC trip.

- Look up OI.AC in Table 13-1.
- Perform checks detailed under Diagnosis.

Figure 13-1 Keypad status modes

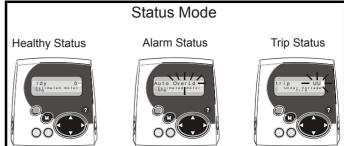
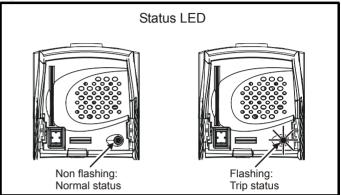



Figure 13-2 Location of the status LED

Trip	Diagnosis
Ol.AC	Instantaneous output over current detected: peak output current greater than 225%
3	Acceleration / deceleration rate is too short. If seen during autotune reduce voltage boost Pr 5.15 Check for short circuit on output cabling Check integrity of motor insulation Is motor cable length within limits for that frame size? Reduce the values in speed loop gain parameters – Pr 3.10, Pr 3.11 and Pr 3.12 (RFCmode) Reduce the values in current loop gain parameters - Pr 4.13 and Pr 4.14 (RFC mode)

Safety	Product	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	DO to ale	Advanced	Technical		UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PC tools	parameters	Data	Diagnostics	Information

Table 13-1 Trip indications

Trip	Diagnosis
br.th	Internal braking resistor thermistor temperature monitoring fail (size 0 only)
	If no internal brake resistor is installed, set Pr 0.51 (or Pr 10.37) to 8 to disable this trip. If an internal brake resistor is installed:
10	Ensure that the internal braking resistor thermistor is connected correctly
	Ensure that the fan in the drive is working correctly Parlace the interval healths are interval.
C.Acc	Replace the internal braking resistor SMARTCARD trip: SMARTCARD Read / Write fail
O.ACC	Check SMARTCARD is installed / located correctly
185	Ensure SMARTCARD is not writing data to data location 500 to 999 Replace SMARTCARD
	SMARTCARD trip: The menu 0 parameter modification cannot be saved to the SMARTCARD because the necessary file has
C.boot	not been created on the SMARTCARD
	A write to a menu 0 parameter has been initiated via the keypad with Pr 11.42 set to auto(3) or boot(4), but the necessary file on the SMARTCARD has not bee created
177	Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD
	Re-attempt the parameter write to the menu 0 parameter
C.bUSY	SMARTCARD trip: SMARTCARD can not perform the required function as it is being accessed by a Solutions Module
178	Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function
C.Chg	SMARTCARD trip: Data location already contains data
179	Erase data in data location Write data to an alternative data location
C.cPr	SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different
188	Press the red reset button
C.dAt	SMARTCARD trip: Data location specified does not contain any data
183	Ensure data block number is correct
C.Err	SMARTCARD trip: SMARTCARD data is corrupted
182	Ensure the card is located correctly Erase data and retry
.02	Replace SMARTCARD
C.Full	SMARTCARD trip: SMARTCARD full
184	Delete a data block or use different SMARTCARD
cL2	Analog input 2 current loss (current mode)
28	Check analog input 2 (terminal 7) current signal is present (4-20mA, 20-4mA)
cL3	Analog input 3 current loss (current mode)
29	Check analog input 3 (terminal 8) current signal is present (4-20mA, 20-4mA)
CL.bit	Trip initiated from the control word (Pr 6.42)
35	Disable the control word by setting Pr 6.43 to 0 or check setting of Pr 6.42
ConF.P	The number of power modules installed no longer matches the value stored in Pr 11.35
444	Ensure that all power modules are correctly connected
111	Ensure that all power modules have powered up correctly Ensure that the value in Pr 11.35 matches the number of power modules connected
C.OPtn	SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive
	Ensure correct Solutions Modules are installed
180	Ensure Solutions Modules are in the same Solutions Module slot
	Press the red reset button
C.Prod	SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product
175	Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD
C.rdo	SMARTCARD trip: SMARTCARD has the Read Only bit set
181	Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access
101	Ensure the drive is not writing to data locations 500 to 999 on the card

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	iagnostics	UL Listing Information
Trip							Diagno	sis					
C.rtg	SMA	RTCARD tr	ip: The vo	Itage aı	nd/or curre	ent rating	of the soul	ce and desti	ination d	rives are	different		
	differe when param Press	ent voltage a the rating o	and current of the destirule oe transferro reset but	t ratings nation d ed if on ton	s. Paramete rive is diffe	ers with the erent from	is attribute v the source o	are likely to vill not be trar drive and the and the file is a	nsferred t file is a p	o the desti arameter fi	nation drive le. Drive rat	by SMAF	RTCARDs
		Parar	meter				Functio	n					
		2.	08	Stan	dard ramp	voltage							
		4.05/6/7,		Curr	ent limits								
			24		current m		caling						
186		5.07,			or rated cur								
		5.09,			or rated vol								
		5.10, 21.10 Rated power factor 5.17, 21.12 Stator resistance											
		5.17, 21.12 Stator resistance 5.18 Switching frequency											
		5.23.											
		5.24,			age offset sient induc	ctance							
		5.25,			or inductan								
		6.	06	DC i	njection br	aking curr	ent						
		6.4	48	Line	power sup	ply loss ri	de through o	letection leve	I				
	The a	bove paran	neters will b	e set to	their defa	ult values							
С.ТуР	SMA	RTCARD tr	ip: SMAR1	CARD	paramete	r set not	compatible	with drive					
187		the reset b		e is the	same as t	he source	parameter f	ile drive type					
dESt	Two	or more par	rameters a	re writ	ing to the	same des	stination pa	rameter					
199	Set P	r xx.00 = 12	2001 check	all visi	ble parame	eters in the	menus for	duplication					
EEF		OM data c 5 comms p		Drive I	node beco	omes ope	n loop and	serial comm	s will tin	neout with	remote ke	ypad on	the drive
31	This t	rip can only	be cleared	by loa	ding defau	It paramet	ers and savi	ng paramete	rs				
Et	Exter	nal trip fro	m input or	ı termii	nal 31								
6	Check Enter		r 10.32 r xx.00 and		•		olling Pr 10.3 ed by serial c						
HF01	Data	processing	error: CP	U addr	ess error								
	Hardv	vare fault -	return drive	to sup	plier							· 	·
HF02	Data	processing	g error: DN	IAC ad	dress erro	r							
	Hardv	vare fault -	return drive	to sup	plier								
HF03	Data	processing	g error: Ille	gal ins	truction								
		vare fault - i											
HF04	Data	processing	error: Ille	gal slo	t instructi	on							
		vare fault -	-										
HF05		processing				n							
пгоэ						11							
LIEGO		vare fault -											
HF06		processing	-			1							
		vare fault -											
HF07	Data	processing	g error: Wa	tchdo	failure								
	Hardv	vare fault -	return drive	to sup	plier								
HF08	Data	processing	g error: Le	vel 4 cr	ash								
	Hardy	vare fault -	return drive	to sup	plier								

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
Trip							Diagno	sis					
HF09	Data	processing	g error: He	ap ove	rflow								
	Hardv	vare fault - ı	return drive	to sup	plier								
HF10	Data	processing	g error: Ro	uter er	ror								
	Hardv	vare fault - i	return drive	to sup	plier								
HF11	Data	processing	g error: Ac	cess to	EEPROM	failed							
	Hardv	vare fault - ı	return drive	to sup	plier								
HF12	Data	processing	g error: Ma	in prog	ram stack	overflow	/						
	Hardv	vare fault - ı	return drive	to sup	plier								
HF13	Data	processing	g error: So	ftware	incompati	ble with h	nardware						
	Hardv	vare or soft	ware fault -	return	drive to su	pplier							
HF17	Multi-	module sy	stem ther	mistor	short circ	uit or ope	n circuit						
217	Hardv	vare fault - ı	return drive	to sup	plier								
HF18	Multi-	module sy	stem inte	rconne	ct cable er	ror							
218	Hardv	vare fault - ı	return drive	to sup	plier								
HF19	Temp	erature fee	edback mu	Iltiplexi	ng failure								
219	Hardv	vare fault - ı	return drive	to sup	plier								
HF20	Powe	r stage rec	ognition:	serial c	ode error								
220	Hardv	vare fault - ı	return drive	to sup	plier								
HF21	Powe	r stage rec	ognition:	unreco	gnised fra	me size							
221	Hardv	vare fault - ı	return drive	to sup	plier								
HF22	Powe	r stage rec	ognition:	multi m	odule fra	ne size m	nismatch						
222	Hardv	vare fault - ı	return drive	to sup	plier								
HF23	Powe	r stage rec	ognition:	multi m	odule vol	tage ratin	g mismatch	1					
223	Hardv	vare fault - ı	return drive	to sup	plier								
HF24	Powe	r stage rec	ognition:	unreco	gnised dri	ve size							
224	Hardv	vare fault - ı	return drive	to sup	plier								
HF25	Curre	nt feedbac	k offset e	rror									
225	Hardv	vare fault - ı	return drive	to sup	plier								
HF26	Soft s	tart relay f	ailed to cl	ose, so	ft start mo	nitor fail	ed or brakir	ng IGBT shor	t circuit	at power	up		
226	Hardv	vare fault - ı	return drive	to sup	plier								
HF27	Powe	r stage the	ermistor 1	fault									
227	Hardv	vare fault - ı	return drive	to sup	plier								
HF28	Powe	r stage the	ermistor 2	fault, o	r internal 1	fan fault (size 3)						
228	Hardv	vare fault - ı	return drive	to sup	plier								
HF29	Contr	ol board th	nermistor	fault									
229	Hardv	vare fault - ı	return drive	to sup	plier								
HF30	DCCT	wire brea	k trip from	power	module								
230	Hardv	vare fault - ı	return drive	to sup	plier								
HF31							•	le has not po	owered (up in a mu	lti-modul	e parallel d	rive
231	If the	AC or DC p	ower supp	ly is pre	sent, or if	this is a si	ngle drive, th	parallel drive nen there is a	hardwar	re fault - re	turn drive	to the suppl	ier
HF32	Powe	r stage - Id	lentificatio	n and t	rip inform	ation ser	ial code err	or					
232	Hardv	vare fault - ı	return drive	to the	supplier								

238 Affinity User Guide

Safety Information	Product Mechanical Electrical Installation Installation Installation Started Parameters the motor Optimization Optimizatio	
Trip	Diagnosis	
It.AC	Output current overload timed out (I²t) - accumulator value can be seen in Pr 4.19	
20	Ensure the load is not jammed / sticking Check the load on the motor has not changed Ensure rated speed parameter is correct (RFC)	
lt.br	Braking resistor overload timed out (I²t) – accumulator value can be seen in Pr 10.39	
19	Ensure the values entered in Pr 10.30 and Pr 10.31 are correct Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 If an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.30 or Pr 10.31 to 0 to disable the trip	
LOAD	Low load detected	
38	Check mechanical motor coupling	
O.CtL	Drive control board over temperature	
23	Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Check ambient temperature Reduce drive switching frequency	
O.ht1	Power device over temperature based on thermal model	
21	Reduce drive switching frequency Reduce duty cycle Decrease acceleration / deceleration rates Reduce motor load	
O.ht2	Heatsink over temperature	
22	Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle Reduce motor load	
Oht2.P	Power module heatsink over temperature	
105	Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle Reduce motor load	
O.ht3	Drive over-temperature based on thermal model	
27	The drive will attempt to stop the motor before tripping. If the motor does not stop in 10s the drive trips immediately. Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce duty cycle Reduce motor load	
Oht4.P	Power module rectifier over temperature or input snubber resistor over temperature (size 4 and above)	
102	Check for supply imbalance Check for supply disturbance such as notching from a DC drive Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle	

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
Trip							Diagno	sis					
OI.AC	Instai	ntaneous o	utput ove	r curre	nt detected	d: peak o	utput currer	nt greater tha	an 225%				
3	If see Check Check Is mo Redu		totune red ircuit on or f motor ins ngth within es in speed	uce volt utput ca ulation limits for d loop g	age boost l bling or that fram ain parame	ie size? eters – Pr		and Pr 3.12 4.14 (RFC m	•	ode)			
OIAC.P	Powe	r module o	ver curre	nt dete	cted from	the modu	ıle output cı	ırrents					
104	If see Check Check Is mo Redu		totune red ircuit on ou f motor ins ngth within es in speed	uce volt utput ca ulation limits for d loop g	age boost I bling or that fram ain parame	ie size? eters – Pr		and Pr 3.12 4.14 (RFC m	`	ode)			
Ol.br	Braki	ng transist	or over-c	urrent c	letected: s	hort circ	uit protectio	n for the bra	king tra	nsistor ac	tivated		
4	Checl	k braking re k braking re k braking re	sistor valu	e is gre	ater than o	r equal to	the minimun	n resistance v	alue				
Olbr.P	Powe	r module k	raking IG	BT ove	r current								
103	Checl	k braking re k braking re k braking re	sistor valu	e is gre	ater than o	r equal to	the minimun	n resistance v	alue				
OldC.P	Powe	r module c	ver curre	nt dete	cted from	IGBT on s	state voltage	e monitoring					
109	Checl	GBT protec k motor and	cable insu	ulation.									
O.Ld1								d digital out		eeds 200n	n A		
26				-				(terminal 22))				
O.SPd		r speed ha			•								
7	Speed	ase the ove d has excee ce the spee	eded 1.2 x	Pr 1.06	or Pr 1.07	(open loo	p mode)	oot (RFC mo	de)				
OV	DC b	us voltage	has excee	eded the	e peak lev	el or the r	maximum c	ontinuous le	vel for 1	5 seconds			
2	Decre Check Check by DC Check Drive	k nominal A k for supply C drives k motor insu voltage ra 200 400 575 690	g resistor v C supply le disturband ulation ting I	Peak vo 415 830 990	aying abov ch could ca	use the Do	ım continuo	– voltage over tus voltage le 410 815 970 175 level is 1.45	evel (15s	s)	recovery fr	rom a notc	h induced
OV.P								he maximun			for 15 sec	onds	
106	Decre Check Check by DC Check	k nominal A	g resistor v C supply le disturband	alue (st evel	aying abov th could ca oltage	use the Do	ım continuo	– voltage ove ous voltage le 410 815			recovery fr	om a notc	h induced
	If the	575 690	erating in Ic	990 1190)	le the ove	1	970 175 level is 1.45	c Pr 6.46	<u>. </u>			

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
Trip							Diagno	sis					
PAd	Keypa	d has bee	n remove	d when	the drive	is receivi	ng the spee	d reference	from the	keypad			
34		keypad and e speed re		elector to	o select sp	eed refere	ence from an	other source					
PH	AC vo	ltage inpu	t phase lo	ss or la	arge suppl	y imbalaı	nce detecte	d					
32	Check NOTE Load le	e all three prinput volta	ge levels a	are corre	ect (at full l	oad)	to trip under	phase loss of	onditions	s. The drive	will atter	mpt to stop th	ne motor
PH.P	Power	module p	hase loss	detect	ion								
107		e all three p input volta		•									
PS	Intern	al power s	upply fau	lt									
5		/e any Solu are fault - r											
PS.10V	10V us	ser power	supply cu	rrent g	reater tha	n 10mA							
8		wiring to to e load on t											
PS.24V	24V in	ternal pov	ver supply	overlo	ad								
9	The us Re		nsists of th and reset kternal 24\	e drive': / >50W	s digital ou power sup	tputs and		d the internal Plus digital ou		ver supply	imit.		
PS.P	Power	module p	ower sup	ply fail									
108		/e any Solu are fault - r											
PSAVE.E	Power	down sav	/e parame	ters in	the EEPR	OM are co	orrupt						
37	The dr Perfori	ive will rev	ert back to ave (Pr xx.	the pov 00 to 10	ver down p 100 or 1001	arameter	set that was	meters were last saved sur power down	uccessfu	lly.	to ensure	this trip does	s or occur
rS	Failure	e to meası	ure resista	nce du	ring autot	une or w	hen starting	in open loo	p vector	mode 0 o	r 3		
33		motor pow	er connec	tion con	itinuity								
SAVE.E	User s	ave paran	neters in t	he EEP	ROM are	corrupt							
36	The dr	ive will reven mauser sa	ert back to	the use	er paramete	er set that	was last say	being saved. ved successfu to ensure this	-	s or occur	the next t	ime the drive	e is
SCL	Drive	RS485 ser	ial comm	loss to	o remote k	reypad							
30	Check Replace Replace	all the cabl cable for c ce cable ce keypad		the driv	e and key	pad	,						
SLX.dF	Solution	ons Modu	le slot X tı	ip: Solı	utions Mo	dule type	installed in	slot X chan	ged				
204,209	Save p	arameters	and reset										
SL3.dF	Buildi	ng automa	ation inter	face slo	ot trip								

214

Module typed changed

Safety Information		duct mation	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	n SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information	
Trip		Diagnosis Solutions Module slot X trip: Solutions Module in slot X has detected a fault													
SLX.E	r	Soluti	ions Modu	le slot X tı	rip: Solı	utions Mo	dule in sl	ot X has o	etected a faul	t					
		Check	SM-I/O 12	r 15/16.50 .	The fol	lowing table	e lists the	•	rror codes for thics section in th						
		Erro	r code		M	lodule				Rea	ason for fa	ult			
			0			All		No	errors						
			1			All		Dig	tal output overl	oad					
202,207	7		2		SM	I-I/O Lite		Ana	log input 1 curr	ent input	too high (>	22mA) o	r too low (<3	mA)	
			_	SM-I/O	PELV, S	M-I/O 24V	Protected	d Dig	tal input overlo	ad					
			3	SM-I/O	PELV, S	M-I/O 24V	Protected	d Ana	log input 1 curi	rent input	t too low (<	3mA)			
				5		24V Protec	ted	Cor	nmunications e	rror					
			4		SM-	I/O PELV		Use	r power supply	absent					
			74			All		Мо	lule over tempe	erature					
SLX.Er	r	Soluti	ions Modu	le slot X tı	rip: Sol	utions Mo	dule in sl	ot X has o	etected a faul	t					
		Fieldb	ous module	e category	,										
			value in P relevant Sc			•			error codes for	the Fieldl	bus module	es. See tl	ne <i>Diagnosti</i>	cs section	
		Erro	r code		M	lodule				Trip	Descripti	ion			
			0			All		No	rip						
			52	SM-PF		S-DP, SM- DeviceNet	Interbus,	Use	r control word t	trip					
			58		SI	M-LON		Inco	rrect non-volat	ile storaç	ge				
			61	SM-PF		S-DP, SM- DeviceNet	Interbus,	Cor	figuration error						
			64		SM-E	DeviceNet		Exp	ected packet ra	ate timeo	ut				
			65	SM-PF		S-DP, SM- DeviceNet	Interbus,	Net	work loss						
			66		SM-PR	OFIBUS-D	Р	Crit	cal link failure						
						SM-Device			off error						
			70	, ,		thernet and		•	h transfer erro						
202,207	7			S	M-Ethe	rnet, SM-L	ON		/alid menu data			nodule fro	m the drive		
, ,			74			All			itions module o						
			75			Ethernet			drive is not res						
			76		SIVI-	Ethernet			Modbus conne			[
			80			All			r-option commu						
			81			All			nmunications e nmunications e						
			82		CM	All Ethernet					Jl Z				
			84						nory allocation	error					
			85			Ethernet			system error						
			86			Ethernet			figuration file e						
		87 SM-Ethernet Language file error													
			98			All		Internal watchdog error							
			99			All		Inte	Internal software error						

Safety Information	Product Information	Mechanical Installation		Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PC tools	Advanced parameters	Technical Data	Diagnostics	UL Listing Information	
Trip							Diagno	sis						
SL3.Er	Build	ling autom	ation inter	face: M	odule has	detected	a fault							
	Chec	k value in F	Pr 17.50 . Th	e follov	ving table li	sts the po	ssible error	codes.						
	Erro	or code			Trip Do	escription	1							
			lo trip											
212			Module oper Real time clo											
		-	P54 cooling			fault								
			rive to option											
		50 B	Building auto	mation	network ei	ror								
SLX.HF	Solut	tions Modu	ule slot X tı	ip: Sol	utions Mo	dule X ha	rdware faul	t						
200,205		Ensure Solutions Module is installed correctly Return Solutions Module to supplier												
SL3.HF		Building automation interface: Module hardware fault												
210		Ensure Solutions Module is installed correctly Return Solutions Module to supplier												
SLX.nF	Solut	Solutions Module slot X trip: Solutions Module has been removed												
203,208	Reins	stall Solutio	s Module is ns Module s and reset		d correctly									
SL3.nF	Build	ling autom	ation inter	face: M	odule has	been ren	noved							
213	Reins	Building automation interface: Module has been removed Ensure Solutions Module is installed correctly Reinstall Solutions Module Save parameters and reset drive												
SL.rtd	Solut	ions Modu	ule trip: Dri	ve mod	le has cha	nged and	Solutions	Module para	meter ro	outing is n	ow incor	rect		
215		reset. trip persist	s, contact th	ne supp	lier of the o	Irive.								
SLX.tO	Solut	ions Modu	ıle slot X tı	ip: Sol	utions Mo	dule wate	hdog timeo	ut						
201,206		reset. trip persist	s, contact th	ne supp	lier of the o	Irive.								
SL3.tO	Build	ling autom	ation inter	face: M	odule wat	chdog tin	neout							
211		reset. trip persist	s, contact th	ne supp	lier of the o	Irive.								
t040 to t0	89 User	defined tr	ip											
40 to 89	Onbo	ard PLC pr	ogram mus	t be inte	errogated to	o find the	cause of this	s trip						
t099		defined tr	-		-									
99				t be inte	errogated to	o find the	cause of this	s trip						
t101		defined tr	-											
101			-	t be inte	errogated to	o find the	cause of this	s trip						
t112 to t1		defined tri		4 h = !!		المام المام	oouer of the	. trin						
112 to 16		defined tr		i be inte	errogated t	una thê	cause of this	s uip						
168 to 17			•	t he inte	erronated to	n find the	cause of this	trin						
t216		defined tr		L DE IIIU	onogateu t	o mila lite	oause Of tills	, uib						
216			-	t be inte	errogated to	o find the	cause of this	s trip						
th		Onboard PLC program must be interrogated to find the cause of this trip Motor thermistor trip												
24	Chec Chec	Check motor temperature Check thermistor continuity Set Pr 7.15 = VOLt and reset the drive to disable this function												
thS		Motor thermistor short circuit												
25	Repla	ace motor /	ermistor wiri motor therr OLt and rese	nistor	rive to disa	ble this fu	nction							

Safety Information	Product Mechanical Electrical Getting Basic Running Installation Installation Installation Started Parameters Installation											
Trip	Diagnosis											
tunE*	Autotune stopped before completion											
18	The drive has tripped out during the autotune The red stop key has been pressed during the autotune The Enable signal (terminal 31) was active during the autotune procedure											
tunE1*	Required speed could not be reached during the inertia test (see Pr 5.12)											
11	Ensure the motor is free to turn i.e. brake was released											
tunE2*	Motor could not be stopped during the inertia test (see Pr 5.12)											
12	Check motor cable wiring is correct											
tunE3*	Measured inertia out of range (see Pr 5.12)											
13	Check motor cable wiring is correct											
Unid.P	Power module unidentified trip											
110	Check all interconnecting cables between power modules Ensure cables are routed away from electrical noise sources											
UP ACC	Onboard PLC program: cannot access Onboard PLC program file on drive											
98	Disable drive - write access is not allowed when the drive is enabled Another source is already accessing Onboard PLC program - retry once other action is complete											
UP div(Onboard PLC program attempted divide by zero											
90	Check program											
UP OFL	Onboard PLC program variables and function block calls using more than the allowed RAM space (stack overflow)											
95	Check program											
UP ovr	Onboard PLC program attempted out of range parameter write											
94	Check program											
UP PAr	Onboard PLC program attempted access to a non-existent parameter											
91	Check program											
UP ro	Onboard PLC program attempted write to a read-only parameter											
92	Check program											
UP So	Onboard PLC program attempted read of a write-only parameter											
93	Check program											
UP udF	Onboard PLC program un-defined trip											
97	Check program											
UP uSE	Onboard PLC program requested a trip											
96	Check program											
UV	DC bus under voltage threshold reached											
1	Check AC supply voltage level Drive voltage rating (Vac) Under voltage threshold (Vdc) UV reset voltage (Vdc) 200 175 215V 400 350 425V											
	575 & 690 435 590V											

^{*}If a tunE through tunE 3 trip occurs, then after the drive is reset the drive cannot be made to run unless it is disabled via the Enable input (terminal 31), drive enable parameter (Pr **6.15**) or the control word (Pr **6.42** and Pr **6.43**).

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	FC tools	parameters	Data	Diagnostics	Information

Table 13-2 Serial communications look-up table

No.	Trip	No.	Trip	No.	Trip		
1	UV	40 to 89	t040 to t089	182	C.Err		
2	OV	90	UP div0	183	C.dAt		
3	OI.AC	91	UP PAr	184	C.FULL		
4	Ol.br	92	UP ro	185	C.Acc		
5	PS	93	UP So	186	C.rtg		
6	Et	94	UP ovr	187	С.ТуР		
7	O.SPd	95	UP OFL	188	C.cPr		
8	PS.10V	96	UP uSEr	189	Reserved		
9	PS.24V	97	UP udF	190	Reserved		
10	br.th	98	UP ACC	191	Reserved		
11	tunE1	99	t099	192	Reserved		
12	tunE2	100		193	Reserved		
13	tunE3	101	t101	194	Reserved		
14	Reserved	102	Oht4.P	195	Reserved		
15	Reserved	103	Olbr.P	196	Reserved		
16	Reserved	104	OIAC.P	197	Reserved		
17	Reserved	105	Oht2.P	198	Reserved		
18	Reserved	106	OV.P	199	DESt		
19	lt.br	107	PH.P	200	SL1.HF		
20	It.AC	108	PS.P	201	SL1.tO		
21	O.ht1	109	OldC.P	202	SL1.Er		
22	O.ht2	110	Unid.P	203	SL1.nF		
23	O.CtL	111	ConF.P	204	SL1.dF		
24	th	112 to 160	t112 to t160	205	SL2.HF		
25	thS	161	Reserved	206	SL2.tO		
26	O.Ld1	162	Reserved	207	SL2.Er		
27	O.ht3	163	Reserved	208	SL2.nF		
28	cL2	164	Reserved	209	SL2.dF		
29	cL3	165	Reserved	210	Reserved		
30	SCL	166	Reserved	211	Reserved		
31	EEF	167	Reserved	212	Reserved		
32	PH	168 to 174	t168 to t174	213	Reserved		
33	rS	175	C.Prod	214	Reserved		
34	PAd	176	Reserved	215	SL.rtd		
35	CL.bit	177	C.boot	216	t216		
36	SAVE.Er	178	C.bUSY	217 to 232	HF17 to HF32		
37	PSAVE.Er	179	C.Chg				
38	LOAD	180	C.OPtn				
39	Reserved	181	C.RdO				

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10010	parameters	Data	Diagnoonoo	Information

The trips can be grouped into the following categories. It should be noted that a trip can only occur when the drive is not tripped or is already tripped but with a trip with a lower priority number.

Table 13-3 Trip categories

Priority	Category	Trips	Comments
1	Hardware faults	HF01 to HF16	These indicate fatal problems and cannot be reset. The drive is inactive after one of these trips and the display shows HFxx . The Drive OK relay opens and the serial comms will not function.
2	Non-resetable trips	HF17 to HF32, SL1.HF, SL2.HF	Cannot be reset. Requires the drive to be powered down.
3	EEF trip	EEF	Cannot be reset unless a code to load defaults is first entered in Pr xx.00 or Pr 11.43.
4	SMARTCARD trips	C.boot, C.Busy, C.Chg, C.OPtn, C.RdO, C.Err, C.dat, C.FULL, C.Acc, C.rtg, C.TyP, C.cpr, C.Prod	Can be reset after 1.0s SMARTCARD trips have priority 5 during power-up
4	Power supply trips	PS.24V	Can be reset after 1.0s
5	Autotune	tunE, tunE1 to tunE3	Can be reset after 1.0s, but the drive cannot be made to run unless it is disabled via the Enable input (terminal 31), <i>Drive enable</i> (Pr 6.15) or the <i>Control word</i> (Pr 6.42 and Pr 6.43).
5	Normal trips with extended reset	OI.AC, OI.Br, OIAC.P, OIBr.P, OldC.P	Can be reset after 10.0s
5	Normal trips	All other trips not included in this table	Can be reset after 1.0s
5	Non-important trips	th, thS, Old1, cL2, cL3, SCL	If Pr 10.37 is 1 or 3 (i.e. bit 0 set to 1), the drive will stop before tripping
5	Phase loss	PH	The drive attempts to stop before tripping
5	Drive over-heat based on thermal model	O.ht3	The drive attempts to stop before tripping, but if it does not stop within 10s the drive will automatically trip
6	Self-resetting trips	UV	Under voltage trip cannot be reset by the user, but is automatically reset by the drive when the supply voltage is with specification

Although the UV trip operates in a similar way to all other trips, all drive functions can still operate but the drive cannot be enabled. The following differences apply to the UV trip:

- Power-down save user parameters are saved when UV trip is activated except when the main high voltage supply is not active (i.e. operating in Low Voltage DC Supply Mode, Pr 6.44 = 1).
- 2. The UV trip is self-resetting when the DC bus voltage rises above the drive restart voltage level. If another trip is active instead of UV at this point, the trip is not reset.
- 3. The drive can change between using the main high voltage supply and low voltage DC supply only when the drive is in the under voltage condition (Pr 10.16 = 1). The UV trip can only be seen as active if another trip is not active in the under voltage condition.
- 4. When the drive is first powered up a UV trip is initiated if the supply voltage is below the restart voltage level and another trip is not active. This does not cause save power down save parameters to be saved at this point.

Safety Product Mechanical Getting SMARTCARD **UL** Listing PC tools Optimization Diagnostics Information Information Installation Installation Started parameters the motor operation parameters Information

13.2 Alarm indications

In any mode an alarm flashes alternately with the data displayed when one of the following conditions occur. If action is not taken to eliminate any alarm except "Autotune", "Lt" and "PLC" the drive may eventually trip. Alarms flash once every 640ms except "PLC" which flashes once every 10s. Alarms are not displayed when a parameter is being edited.

Table 13-4 Alarm indications

Table 13-4 Alarm Indications										
Lower display	Description									
br.rS	Braking resistor overload									
Braking resistor I ² t accumulator (Pr 10.39) in the drive has reached 75.0% of the value at which the drive will trip and the braking IGBT is active.										
Hot	Heatsink or control board or inverter IGBT over temperature alarms are active									
drive will tri O.ht2 trip).	eatsink temperature has reached a threshold and the p O.ht2 if the temperature continues to rise (see the									
The ambier	 The ambient temperature around the control PCB is approaching the over temperature threshold (see the O.CtL trip). 									
OVLd	Motor overload									
	occumulator (Pr 4.19) in the drive has reached 75% of ich the drive will be tripped and the load on the drive is									
Auto tune	Autotune in progress									
The autotune p alternatively on	rocedure has been initialised. 'Auto' and 'tunE' will flash the display.									
Lt	Limit switch is active									
	limit switch is active and that it is causing the motor to forward limit switch with forward reference etc.)									
PLC	Onboard PLC program is running									
	C program is installed and running. The lower display once every 10s.									

13.3 Status indications

Table 13-5 Status indications

Upper display	Description	Drive output stage
ACUU	AC Supply loss	
	letected that the AC supply has been npting to maintain the DC bus voltage the motor.	Enabled
Auto	Auto mode	Enabled
	ning in Auto mode	Litabioa
dc	DC applied to the motor	Enabled
	plying DC injection braking.	
dEC	Decelerating	Enabled
	celerating the motor.	
Hand	Hand mode	Enabled
	ning in Hand mode	
Heat	Motor pre-heat	Enabled
Motor pre-heat		
	Inhibit ibited and cannot be run. le signal is not applied to terminal 31 or 0.	Disabled
Off	Drive is stopped	Disabled
Drive is stoppe	d	Disabled
rdY	Ready	Disabled
The drive is rea	•	Biodbiod
	Drive is running	Enabled
	g with Hand / Off / Auto disabled	
StoP	Stop or holding zero speed	Enabled
	ding zero speed.	
triP	Trip condition	
	ripped and is no longer controlling the code appears on the right hand side of he display.	Disabled

Table 13-6 Solutions Module and SMARTCARD status indications at power-up

Lower display	Description								
boot									
Δ narameter se	A parameter set is being transferred from the SMARTCARD to the								

parameter set is being transferred from the SMARTCARD to the drive during power-up. For further information, please refer to section 9.2.4 Booting up from the SMARTCARD on every power up (Pr 11.42 = boot (4)) on page 121.

The drive is writing a parameter set to the SMARTCARD during power-

For further information, please refer to section 9.2.3 Auto saving parameter changes (Pr 11.42 = Auto (3)) on page 120.

loAding

The drive is writing information to a Solutions Module.

Safety Product **UL** Listing Mechanical Electrical SMARTCARE Optimization PC tools Diagnostics Information Information Installation Installation Started parameters the moto operation parameters Data Information

13.4 Displaying the trip history

The drive retains a log in Pr 10.20 to Pr 10.29 of the last 10 trips that have occurred. The state of Pr 6.49 determines whether date and time or module number, associated with the trip, is stored (see Table 13-7).

Table 13-7 Trip log definition

Trip	Trip code	Pr 6.	Pr 6.49 = 0	
number	Trip code	Date	Time	Module number
Trip 1	10.20	10.41	10.42	10.42
Trip 2	10.21	10.43	10.44	10.44
Trip 3	10.22	10.45	10.46	10.46
Trip 4	10.23	10.47	10.48	10.48
Trip 5	10.24	10.49	10.50	10.50
Trip 6	10.25	10.51	10.52	10.52
Trip 7	10.26	10.53	10.54	10.54
Trip 8	10.27	10.55	10.56	10.56
Trip 9	10.28	10.57	10.58	10.58
Trip 10	10.29	10.59	10.60	10.60

Trip 1 is the most recent trip or the current trip if the drive is in a trip condition and trip 10 is the oldest trip.

The date and time for Pr 10.41 to 10.59 are taken from the values in Pr 6.16 and Pr 6.17.

The value in Pr 6.19 determines if power-up time, drive running time or real time clock is logged. Refer to section 6.2.11 Real time clock on page 101.

If any parameter between Pr 10.20 and Pr 10.29 inclusive is read by serial communications, then the trip number in Table 13-1 Trip indications on page 236 is the value transmitted.

13.5 Behaviour of the drive when tripped

If the drive trips, the output of the drive is disabled so that the drive stops controlling the motor. If any trip occurs (except the UV trip) the following read only parameters are frozen until the trip is cleared. This is to help in diagnosing the cause of the trip.

Parameter	Description
1.01	Frequency/speed reference
1.02	Pre-skip filter reference
1.03	Pre-ramp reference
2.01	Post-ramp reference
3.01	Final speed ref
3.02	Speed feedback
3.03	Speed error
3.04	Speed controller output
4.01	Current magnitude
4.02	Active current
4.17	Reactive current
5.01	Output frequency
5.02	Output voltage
5.03	Power
5.05	DC bus voltage
7.01	Analog input 1
7.02	Analog input 2
7.03	Analog input 3

Fire mode

If Fire mode is activated, then only certain trips will be active. Refer to section 11.21.3 Fire mode on page 203.

Analog and digital I/O

The analog and digital I/O on the drive continue to work correctly if a trip occurs, except the digital outputs will go low if one of the following trips occur: O.Ld1, PS.24V.

Drive logic functions

The drive logic functions (i.e. PID, variable selectors, threshold detectors, etc.) continue to operate when the drive is tripped.

Onboard PLC program

The Onboard PLC program continues to run if the drive is tripped, except if one of Onboard PLC program trips occur.

Braking IGBT

The braking IGBT continues to operate even when the output of the drive is not enabled (except if the low voltage DC supply is being used), but is only disabled if any of the following trips occurs or would occur if another trip had not already become active: Ol.Br. PS. It.Br or OV.

Safety Product Mechanical Getting Optimization PC tools Diagnostics operation Information Information Installation Installation Started the moto parameters

UL Listing Information 14

The drives have been assessed to meet both UL and cUL requirements.

The Control Techniques UL file number is E171230. Confirmation of UL listing can be found on the UL website: www.ul.com.

14.1 Common UL information

Conformity

- Size 1 to 3 standard drives conform to cULus Type 1 as standard
- Size 4 to 6 standard drives conform to cULus open type as standard, and cULus Type 1 when the optional conduit box is fitted
- Size 1 to 3 E12/E54 drives conform to cULus Type 12 as standard
- Size 4 to 6 E12/E54 drives conform to UL Type 12 as standard

For further information, refer to section 2.2 Drive types on page 10.

The drive conforms to cULus listing requirements only when the following are observed:

- The standard Affinity drive is installed in a Pollution degree II environment, or better, as defined by UL508C
- The E12/E54 Affinity drive is installed in a Pollution degree III environment, or better, as defined by UL508C
- The terminal tightening torques specified in section 3.10.1 Terminal sizes and torque settings on page 56
- If the drive control stage is supplied by an external power supply (+24V), the external power supply must be a UL Class 2 power

Motor overload protection

The drive provides motor overload protection. The default overload protection level is no higher than 113% of full-load current (FLC) of the drive in open loop mode and no higher than 114% of full-load current (FLC) of the drive in RFC mode. It is necessary for the motor rated current to be entered into Pr 0.46 (or Pr 5.07) for the protection to operate correctly. The protection level may be adjusted below 150% if required. Refer to section 8.2 Current limits on page 117 for more information. The drive also provides motor thermal protection. Refer to section 8.3 Motor thermal protection on page 117.

Fire Mode - important warning

When Fire Mode is active the motor overload and thermal protection are disabled. Fire Mode is provided for use only in emergency situations where the safety risk from disabling overload protection is less than the risk from the drive tripping - typically in smoke extraction operation to permit evacuation of a building. Fire Mode is activated by setting Pr 1.53 (Fire mode set speed) to a non-zero value and asserting digital input 4. When operating in Fire Mode the drive displays a flashing warning Fire mode active. Care must be taken to prevent inadvertent activation of Fire Mode, as well as ensuring that after using or testing the function the input is returned to the normal state, as confirmed by the absence of the flashing warning. Care must be taken to ensure that Pr 1.53 or Pr 1.54 are not inadvertently re-allocated to different inputs or variables. It should be noted that, by default, Pr 1.54 is controlled from digital input 4 and changing Pr 6.04 or Pr 8.24 can re-allocate this digital input to another parameter. These parameters are at access level 2 in order to minimise the risk of inadvertent or unauthorized changes. It is recommended that User Security be applied to further reduce the risk (see section 5.10 Parameter access level and security on page 90). These parameters may also be changed via serial communications so adequate precautions should be taken if this functionality is utilised.

Overspeed Protection

The drive provides overspeed protection. However, it does not provide the level of protection afforded by an independent high integrity overspeed protection device.

14.2 Power dependant UL information

Affinity size 1 to 6 14.2.1

Conformity

Size 1 to 6 standard and size 1 to 3 E12/E54 drives conform to cULus. and size 4 to 6 E12/E54 drives conform to UL listing requirements when the following are observed:

Ambient conditions

Size 1 to 6 standard and size 1 to 3 E12/E54 drives

The ambient temperature does not exceed 40°C (104°F) when the drive is operating.

Size 4 to 6 E12/E54 drives

The ambient temperature does not exceed 35°C (95°F) when the drive is operating.

Fuses

Size 1 to 3

The correct UL-listed fast acting fuses (class CC or class J up to 30A and class J above 30A), e.g. Bussman Limitron KTK-R series, Ferraz Shawmut ATMR series or equivalent, are used in the AC supply. The drive does not comply with UL if MCBs are used in place

For further details on fusing, refer to in Table 4-3 and Table 4-4 on page 66.

Size 4 to 6

The UL-listed Ferraz HSJ (High speed J class) fuses are used in the AC supply. The drive does not comply with UL if any other fuses or MCBs are used in place of those stated.

For further details on fusing, refer to Table 4-5 on page 67.

Field wiring Size 1 to 4

Class 1 60/75°C (140/167°F) copper wire only is used in the installation

Class 1 75°C (167°F) copper wire only is used in the installation

Field wiring connectors Sizes 4 to 6

UL listed wire connectors are used for terminating power circuit field wiring, e.g. Ilsco TA series

14.3 AC supply specification

The drive is suitable for use in a circuit capable of delivering not more than 100,000rms symmetrical Amperes at 264Vac rms maximum (200V drives), 528Vac rms maximum (400V drives) or 600Vac rms maximum (575V and 690V drives).

14.4 Maximum continuous output current

The drive models are listed as having the maximum continuous output currents (FLC) shown in Table 14-1, Table 14-2, Table 14-3 and Table 14-4 (see Chapter 12 Technical Data on page 214 for details).

The following values also apply to the E12/E54 drives.

Table 14-1 Maximum continuous output current (200V drives)

Model	FLC (A)	Model	FLC (A)
BA1201	5.2	BA3201	42
BA1202	6.8	BA3202	54
BA1203	9.6	BA4201	68
BA1204	11	BA4202	80
BA2201	15.5	BA4203	104
BA2202	22		
BA2203	28		

Safety	Product	Mechanical		Getting	Basic	Running	Optimization	SMARTCARD	PC tools	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	parameters	the motor	Optimization	operation	1 0 10013	parameters	Data	Diagnostics	Information

Table 14-2 Maximum continuous output current (400V drives)

Model	FLC (A)	Model	FLC (A)
BA1401	2.8	BA3401	35
BA1402	3.8	BA3402	43
BA1403	5.0	BA3403	56
BA1404	6.9	BA4401	68
BA1405	8.8	BA4402	83
BA1406	11	BA4403	104
BA2401	15.3	BA5401	138
BA2402	21	BA5402	168
BA2403	29	BA6401	205
		BA6402	236

Table 14-3 Maximum continuous output current (575V drives)

Model	FLC (A)	Model	FLC (A)
BA3501	5.4	BA3505	16
BA3502	6.1	BA3506	22
BA3503	8.3	BA3507	27
BA3504	11		

Table 14-4 Maximum continuous output current (690V drives)

Model	FLC (A)	Model	FLC (A)
BA4601	22	BA5601	84
BA4602	27	BA5602	99
BA4603	36	BA6601	125
BA4604	43	BA6602	144
BA4605	52		
BA4606	62		

14.5 Safety label

The safety label supplied with the connectors and mounting brackets must be placed on a fixed part inside the drive enclosure where it can be seen clearly by maintenance personnel for UL compliance.

The label clearly states "CAUTION Risk of Electric Shock Power down unit 10 minutes before removing cover".

14.6 UL listed accessories

- BA-Keypad
- SM-Ethernet
- SM-I/O Lite
- SM-I/O 120V

SM-I/O Plus

SM-LON

- · SM-DeviceNet
- SM-PROFIBUS-DP
- SM-I/O PELV
- SM-I/O 24V Protected
- SM-I/O 32

List of figures

Figure 2-1	Features	9	Figure 3-38	Enclosure layout	. 45
Figure 2-2	Features of the drive		Figure 3-39	Enclosure having front, sides and top	
Figure 2-3	Typical drive rating labels			panels free to dissipate heat	. 46
Figure 2-4	Options available with Affinity		Figure 3-40	Example of IP54 (UL Type 12 / NEMA 12)	
Figure 3-1	Location and identification of standard drive		J	through-panel layout	47
3	terminal covers	21	Figure 3-41	Installing the gasket	
Figure 3-2	Removing the standard drive size 1		Figure 3-42	Installation of IP54 insert for size 1	
9	terminal covers	22	Figure 3-43	Installation of IP54 insert for size 2	
Figure 3-3	Removing the standard drive size 2		Figure 3-44	Option 2 for achieving IP54 (UL type 12 /	
J	terminal covers	22	J	NEMA 12) through-panel mounting	. 49
Figure 3-4	Removing the standard drive size 3		Figure 3-45	Option 3 for achieving IP54 (UL Type 12 /	
J	terminal covers	22	J	NEMA 12) through panel mounting	. 50
Figure 3-5	Removing the size 4, 5 and 6 standard drive		Figure 3-46	Footprint mounting the EMC filter	
•	terminal covers (size 4 illustrated)	23	Figure 3-47	Bookcase mounting the EMC filter	
Figure 3-6	Removing the finger-guard break-outs		Figure 3-48	Size 4 to 6 mounting of EMC filter	
Figure 3-7	Removing the DC terminal cover break-outs		Figure 3-49	Size 1 external EMC filter	
Figure 3-8	Size 4 to 6 finger-guard grommets	24	Figure 3-50	Size 2 external EMC filter	. 52
Figure 3-9	Size 4 standard drive with conduit		Figure 3-51	Size 3 external EMC filter	. 53
	connection box installed	24	Figure 3-52	Size 4 and 5 external EMC filter	. 54
Figure 3-10	Removing the top cover (size 1 to 4)	24	Figure 3-53	Size 6 external EMC filter	. 55
Figure 3-11	Removing the top cover (size 5 to 6)	25	Figure 3-54	Replacing the small filters on the size 4, 5	
Figure 3-12	Drilling the size 3 to 6 E12/E54 gland plate	25		and 6 E12/E54 drive (top and bottom on size	
Figure 3-13	Installation and removal of a Solutions			4 and top only on size 5 and 6)	. 58
	Module	26	Figure 3-55	Replacing the large top and bottom filters	
Figure 3-14	Installation and removal of a keypad	26		on the size 5 and 6 E12/E54 drive	. 58
Figure 3-15	Surface mounting the standard size 1 drive		Figure 3-56	Replacing the real-time clock battery	. 59
	with conduit connection box installed	27	Figure 4-1	Size 1 power connections	60
Figure 3-16	Surface mounting the standard size 2 drive		Figure 4-2	Size 2 power connections	. 61
	with conduit connection box installed	28	Figure 4-3	Size 3 power connections	. 61
Figure 3-17	Surface mounting the standard size 3 drive		Figure 4-4	Size 4, 5 and 6 power connections	
	with conduit connection boxes installed	28	Figure 4-5	Size 2 ground connections	
Figure 3-18	Surface mounting the standard size 4 drive		Figure 4-6	Size 3 ground connections	
	with conduit connection boxes installed	29	Figure 4-7	Size 4, 5 and 6 ground connections	63
Figure 3-19	Surface mounting the standard size 5 drive		Figure 4-8	Location of size 6 E12/54 drive 24V power	
	with conduit connection boxes installed	30		supply	64
Figure 3-20	Surface mounting the standard size 6 drive		Figure 4-9	Location of the size 6 heatsink fan supply	
	with conduit connection boxes installed	31		connections	
Figure 3-21	Through-panel mounting the standard size 1		Figure 4-10	Size 6 heatsink fan supply connections	
	drive	32	Figure 4-11	Cable construction influencing the capacitance	
Figure 3-22	Through-panel mounting the standard size		Figure 4-12	Preferred chain connection for multiple motors	
F: 0.00	2 drive	33	Figure 4-13	Alternative connection for multiple motors	
Figure 3-23	Through-panel mounting the standard size	00	Figure 4-14	Typical protection circuit for a braking resistor.	
F: 0.04	3 drive	33	Figure 4-15	Installation of grounding clamp (size 1 and 2)	
Figure 3-24	Through-panel mounting the standard size	0.4	Figure 4-16	Installation of grounding clamp (size 3)	
F: 0.05	4 drive	34	Figure 4-17	Installation of grounding bracket (sizes 1 to 6)	73
Figure 3-25	Through-panel mounting the standard size	25	Figure 4-18	Size 4 and 5 grounding link bracket in its	71
Figure 2.00	5 drive	35	Figure 4.40	surface mount position (as supplied)	. /4
Figure 3-26	Through-panel mounting the standard size	26	Figure 4-19	Size 4 and 5 grounding link bracket folded	71
Eiguro 2 27	6 driveSize 4, 5 and 6 mounting bracket		Figure 4.20	up into its through- panel mount position	
Figure 3-27	•	31	Figure 4-20	Removal of internal EMC filter (size 1 to 3)	
Figure 3-28	Orientation of the size 4, 5 and 6 mounting	27	Figure 4-21	Removal of internal EMC filter (sizes 4 to 6)	. 74
Eiguro 2 20	bracket	31	Figure 4-22	General EMC enclosure layout showing	75
Figure 3-29	Location of top surface mounting brackets	27	Figure 4 22	ground connections	
Figure 3 30	for size 5 and 6		Figure 4-23	Drive cable clearances	. 10
Figure 3-30	Size 1 E12/E54 drive surface mounting Size 2 E12/E54 drive surface mounting		Figure 4-24	Supply and ground cable clearance (size	77
Figure 3-31	Size 3 E12/E54 drive surface mounting		Figure 4.25	1 to 3)Supply and ground cable clearance (size	. 1 1
Figure 3-32 Figure 3-33	Size 4 E12/E54 drive surface mounting		Figure 4-25	4 to 6)	77
Figure 3-34	Size 5 E12/E54 drive surface mounting		Figure 4-26	Sensitive signal circuit clearance	
Figure 3-34	Size 6 E12/E54 drive surface mounting		Figure 4-20	Grounding the drive, motor cable shield	, 0
Figure 3-36	Mounting option 1		1 1gui C - 7-21	and filter	78
Figure 3-37	Mounting option 2		Figure 4-28	Grounding the motor cable shield	
5	a Abasa =				. •

Figure 4-29	Shielding requirements of optional	
J	external braking resistor	78
Figure 4-30	Grounding of signal cable shields using	
	the grounding bracket	79
Figure 4-31	Connecting the motor cable to a terminal	
Fi 4 00	block in the enclosure	79
Figure 4-32	Connecting the motor cable to an isolator /	70
Figure 4-33	disconnect switch	79
rigure 1 -55	inputs and outputs	80
Figure 4-34	Surge suppression for analog and bipolar	00
90.0 . 0 .	inputs and outputs	80
Figure 4-35	Location of the RJ45 serial comms connector	
Figure 4-36	Default terminal functions	82
Figure 4-37	Multi-drop connection	
Figure 5-1	BA-Keypad	
Figure 5-2	Display modes	
Figure 5-3	Mode examples	
Figure 5-4	Parameter navigation	
Figure 5-5	Menu structure	
Figure 5-6 Figure 6-1	Menu 0 copying Menu 0 logic diagram	
Figure 6-1	Fixed and variable V/f characteristics	
Figure 7-1	Minimum connections to get the motor	93
riguic / i	running in any operating mode	108
Figure 8-1	Motor thermal protection	
Figure 8-2	Torque and rated voltage against speed	
Figure 9-1	Installation of the SMARTCARD	.119
Figure 9-2	Basic SMARTCARD operation	
Figure 10-1	Onboard PLC program scheduling	
Figure 11-1	Menu 1 logic diagram	
Figure 11-2	Menu 2 logic diagram	
Figure 11-3	Menu 3 Open-loop logic diagram	143
Figure 11-4	Menu 3 RFC logic diagram	
Figure 11-5	Menu 4 Open loop logic diagram	.146
Figure 11-6	Menu 4 RFC logic diagram	
Figure 11-7	Menu 5 Open-loop logic diagram	
Figure 11-8	Menu 5 RFC logic diagram	
Figure 11-9	Menu 6 logic diagram	
Figure 11-10	Menu 7 logic diagram	. 155
	Menu 8 logic diagram	
	Menu 9 logic diagram: Programmable logic	161
Figure 11-13	Menu 9 logic diagram: Motorized pot and	400
Ciguro 11 14	binary sum	
Figure 11-14	Menu 9 logic diagram: Timers Menu 12 logic diagram	
Figure 11-15 Figure 11-16	Menu 12 logic diagram (continued)	
Figure 11-10	Open-loop brake function	
Figure 11-18	Open-loop brake sequence	
Figure 11-19	RFC brake function	
Figure 11-20	RFC brake sequence	
Figure 11-21	Menu 14 Logic diagram - Independant	
9 = .	controllers	.174
Figure 11-22	Menu 14 Logic diagram - Combined control	
Figure 11-23	Location of Solutions Module slots and	
J	their corresponding menu numbers	.179
Figure 11-24	SM-I/O Plus analog logic diagram	
Figure 11-25		
Figure 11-26	SM-I/O Plus digital logic diagram 2	
Figure 11-27		
Figure 11-28		
Figure 11-29		
-	SM-I/O PELV digital input logic diagram	
Figure 11-31		
Figure 11-32	SM-I/O PELV analog input logic diagram	.188

Figure 11-33	SM-I/O PELV analog output logic diagram	189
Figure 11-34	SM-I/O 24V Protected digital I/O logic	
	diagram	191
Figure 11-35	SM-I/O 24V Protected digital I/O logic	
	diagram	192
Figure 11-36	SM-I/O 24V Protected relay logic diagram	192
Figure 11-37	SM-I/O 24V Protected analog output logic	
	diagram	193
Figure 11-38	SM-I/O 120V digital input logic diagram	194
Figure 11-39	SM-I/O 120V relay diagram	195
Figure 13-1	Keypad status modes	235
Figure 13-2	Location of the status LED	235

List of tables

Table 2-1	200V Drive ratings (200V to 240V ±10%)11	Table 9-2	SMARTCARD codes	120
Table 2-2	400V Drive ratings (380V to 480V ±10%)12	Table 9-3	Key to parameter table coding	121
Table 2-3	575V Drive ratings (500V to 575V ±10%)13	Table 9-4	Trip conditions	123
Table 2-4	690V Drive ratings (500V to 690V ±10%)13	Table 9-5	SMARTCARD status indications	124
Table 2-5	Typical overload limits for size 1 to 614	Table 11-1	Menu descriptions	128
Table 2-6	Solutions Module identification17	Table 11-2	Key to parameter table coding	128
Table 2-7	Parts supplied with the drive19	Table 11-3	Feature look-up table	129
Table 3-1	Conduit box part numbers24	Table 11-4	Definition of parameter ranges & variable	
Table 3-2	Mounting brackets (Standard)37		maximums	132
Table 3-3	E12/E54 mounting clearances38	Table 11-5	Maximum motor rated current	134
Table 3-4	E12/E54 mounting brackets43	Table 11-6	Defaults for Pr 10.30 and Pr 10.31	
Table 3-5	Description of fixings49	Table 11-8	Active reference	
Table 3-6	Quantity of nylon washers supplied with the	Table 11-9	Power-up modes if Pr 1.52 = 3	
	drive49	Table 12-1	Summary of power and current rating tables	
Table 3-7	Environment considerations50	Table 12-2	Maximum permissible continuous output	
Table 3-8	Power losses from the front of the drive		current @ 40°C (104°F) ambient for	
	when through-panel mounted50		standard and size 1 to 3 E12/E54 drives	. 215
Table 3-9	Drive EMC filter details (size 1 to 6)51	Table 12-3	Maximum permissible continuous output	
Table 3-10	Drive control and relay terminal data56		current @ 40°C (104°F) ambient for size 1	
Table 3-11	Wall mounted drive power terminal data56		and 2 drives with IP54 insert and standard	
Table 3-12	Plug-in terminal block maximum cable sizes56		fan installed	216
Table 3-13	Schaffner external EMC filter terminal data	Table 12-4	Maximum permissible continuous output	
rable o lo	(size 1 to 6)56	14510 12 1	current @ 50°C (122°F) ambient for	
Table 3-14	Epcos external EMC Filter terminal data56		standard and size 1 to 3 E12/E54 drives	217
Table 4-1	Behaviour of the drive in the event of a motor	Table 12-5	Maximum permissible continuous output	
rable 1 1	circuit ground (earth) fault with an IT supply63	14510 12 0	current @ 35°C (95°F) ambient for size 4 to	
Table 4-2	Supply fault current used to calculate		6 E12/54 drives	218
14510 12	maximum input currents65	Table 12-6	Maximum permissible continuous output	2 10
Table 4-3	Size 1 to 3 input current, fuse and cable	14510 12 0	current @ 40°C (104°F) ambient for size	
Tubic 4 0	size ratings (European)66		4 to 6 E12/54 drives	218
Table 4-4	Size 1 to 3 input current, fuse and cable	Table 12-7	Maximum permissible continuous output	210
Table 4-4	size ratings (USA)66	Table 12-7	current @ 45°C (113°F) ambient for size	
Table 4-5	Size 4 and larger input current, fuse and		4 to 6 E12/54 drives	210
Table 4-5	cable size ratings67	Table 12-8	Summary of drive losses tables	
Table 4-6	Maximum motor cable lengths (200V drives)68	Table 12-9	Losses @ 40°C (104°F) ambient for	220
Table 4-7	Maximum motor cable lengths (400V drives)68	Table 12-3	standard and size 1 to 3 E12/E54 drives	221
Table 4-8	Maximum motor cable lengths (575V drives)68	Table 12-10	Losses @ 40°C (104°F) ambient for size	22 1
Table 4-9	Maximum motor cable lengths (690V drives)68	Table 12-10	1 and 2 drives with IP54 insert and	
Table 4-10	Braking transistor turn on voltage70		standard fan installed	222
Table 4-11	Heatsink mounted braking resistor data70	Table 12-11	Losses @ 50°C (122°F) ambient for	
Table 4-12	Heatsink mounted braking resistor data70	Table 12-11	standard and size 1 to 3 E12/E54 drives	223
Table 4-13	Minimum resistance values and peak	Table 12-12	Losses @ 35°C (95°F) ambient for size	220
Table 4-15	power rating for the braking resistor at	Table 12-12	4 to 6 E12/54 drives	224
	40°C (104°F)71	Table 12-13	Losses @ 40°C (104°F) ambient for	∠∠¬
Table 4-14	Affinity and EMC filter cross reference73	Table 12-13	size 4 to 6 E12/54 drives	224
Table 4-15	Second environment emission compliance76	Table 12-14	Losses @ 45°C (113°F) ambient for size	∠∠ᠲ
Table 4-16	Connection details for RJ45 connector80	14016 12-14	4 to 6 E12/54 drives	225
Table 4-10	Isolated serial comms lead details80	Table 12 15	Power losses from the front of the drive	223
Table 4-17	The terminal connections consist of:81	1able 12-15		225
Table 5-1		Table 12 16	when through-panel mountedIP Rating degrees of protection	
	Advanced menu descriptions			
Table 5-2	Menu 40 parameter descriptions		UL / NEMA enclosure ratings	
Table 5-3	Menu 41 parameter descriptions89		Acoustic noise data for wall mounted drives	
Table 5-4	Alarm indications		Overall standard drive dimensions	221
Table 5-5	Status indications89	1 able 12-20	Overall wall mounted standard drive	227
Table 5-6	Solutions Module and SMARTCARD status	Table 12.01	dimensions with conduit box installed	
Table 7.4	indications on power-up89		Overall drive weights	
Table 7-1	Minimum control connection requirements		Overall 513/554 drive weights	
Table 0.4	for each control mode		Overall E12/E54 drive weights	228
Table 8-1	Available switching frequencies	1 able 12-24	Supply fault current used to calculate	000
Table 8-2	Sample rates for various control tasks at	Table 40.05	maximum input currents	228
Table 0.4	each switching frequency	rable 12-25	Size 1 to 3 input current, fuse and cable	000
Table 9-1	SMARTCARD data blocks119		size ratings	228

Iable	12-20	Size 4 and larger input current, luse and	
		cable size ratings	.229
Table	12-27	Maximum motor cable lengths (200V drives)	.229
Table	12-28	Maximum motor cable lengths (400V drives)	.230
Table	12-29	Maximum motor cable lengths (575V drives)	.230
Table	12-30	Maximum motor cable lengths (690V drives)	.230
Table	12-31	Minimum resistance values and peak	
		power rating for the braking resistor at	
		40°C (104°F)	
Table	12-32	Drive control and relay terminal data	.230
Table	12-33	Drive power terminal data	
Table	12-34	Immunity compliance	.231
Table	12-35	Size 1 emission compliance	
Table	12-36	Size 2 emission compliance	.231
Table	12-37	Size 3 emission compliance	
Table	12-38	Size 4 (200V & 400V) emission compliance .	
Table	12-39	Size 4 (690V) emission compliance	
Table	12-40	Size 5 (400V) emission compliance	
	12-41	Size 5 (690V) emission compliance	
Table		Size 6 (400V only) emission compliance	
Table		Size 6 (690V only) emission compliance	
Table		EMC filter cross reference	
Table		Optional external EMC filter details	
Table		Optional external EMC filter dimensions	
Table	-	Trip indications	
Table		Serial communications look-up table	
Table		Trip categories	
Table		Alarm indications	
		Status indications	.247
Table	13-6	Solutions Module and SMARTCARD	
		status indications at power-up	.247
Table	-	Trip log definition	.248
Table	14-1	Maximum continuous output current (200V	
		drives)	.249
Table	14-2	Maximum continuous output current (400V	
		drives)	.250
Table	14-3	Maximum continuous output current (575V	
		drives)	.250
Table	14-4	Maximum continuous output current (690V	
		drives)	.250

Index

Symbols	D
+10V user output82	
+24V external input82	DC bus voltage70, 132, 207, 209, 210
+24V user output83	Deceleration 70, 94, 98, 100, 110, 111, 115, 142, 200, 206, 209
Numerics	Defaults (restoring parameter)9
0V common82	
	Destination parameter8
A	Diagnostics
AC supply contactor67	Digital I/O 18
AC supply requirements63	
Acceleration94, 98, 110, 111, 115, 142	Digital I/O 38
Access20	Digital Input 1 84
Access Level90	Digital Input 2 84
Accuracy227	
Acoustic noise227	,
Advanced menus88	· · ·
Advanced parameters128	
Advanced process PID204	
Air-flow in a ventilated enclosure46	·
Alarm247	
Alarm Indications	
Altitude	
Analog input101	
Analog input 283	
Analog input 3	
Analog output 1	
Analog output 2	
Autotune103, 112, 115	
В	EMC filter dimensions (external, overall)
Basic requirements	EMC filter torque settings (external)
Battery replacement (real-time clock)	
Braking	
Braking Modes	
Braking resistor values	
Building automation interface	
Dallaring data-riddon interiore	Environmental protection
C	External EMC filter
Cable clearances	
Cable lengths (maximum)229	F
Cable size ratings228	
Cable types and lengths68	
Catch a spinning motor210	Field weakening (constant power) operation118
Cautions	Fieldbus module category parameters
Conduit box	Filter replacement (E12/E54 size 4, 5 and 6)5
Control connections81	Fire mode
Control terminal specification82	•
Cooling	
Cooling method	
Current demand filter	71
Current limit	•
Current limits	
Current loop gains	
Current ratings214	
	Ground leakage
	Grounding clamp 7'
	Grounding clamp75

н	
Hazardous areas	20
Heatsink mounted braking resistor	
High speed operation	
Hold zero speed	
Humidity	
, I	
I/O module category parameters	180
Input current ratings	
Input inductor calculation	
Internal EMC filter	
Isolator switch	
Items supplied with the drive	
ĸ	
Keypad and display - fitting / removal Keypad operating mode	26
Auto	203
Hand	203
Off	203
Keypad operation	86
L	
Line power supply loss modes	209
Line reactors	64, 225
Low load	102

M	
Maximum speed / frequency	 .118
Mechanical Installation	 20
Menu 0	
Menu 01 - Frequency / speed reference	
Menu 02 - Ramps	
Menu 03 - Slave frequency, speed feedback and speed	
control	1/13
Menu 04 - Torque and current control	
Menu 05 - Motor control	
Menu 06 - Sequencer and clock	
Menu 07 - Analog I/O	
Menu 08 - Digital I/O	 . 158
Menu 09 - Programmable logic, motorized pot and	
binary sum	
Menu 10 - Status and trips	
Menu 11 - General drive set-up	
Menu 12 - Threshold detectors and variable selectors	
Menu 14 - User PID controller	
Menu 15 and 16 - Solution Module set-up	
Menu 17 - Building Automation Network	 .199
Menu 18 - Application menu 1	 .199
Menu 19 - Application menu 2	 199
Menu 20 - Application menu 3	
Menu 21 - Second motor parameters	
Menu 22 - Additional Menu 0 set-up	
Menu structure	
Minimum connections to get the motor running in any	
operating mode	 108
Mode parameter	
Model number	
Monitoring	
Motor (running the motor)	 107
Motor cable - interruptions	
Motor isolator / disconnector-switch	
Motor map parameters	
Motor number of poles	
Motor operation	
Motor parameters	
Motor rated current	
Motor rated frequency	
Motor rated power factor1	
Motor rated speed	
Motor rated voltage1	
Motor requirements	
Motor thermal protection	
Motor winding voltage	 69
Mounting methods	 27
Multiple motors	 69
N	
Nameplate description	 15
NEMA rating	

Notes8

0		S	
Onboard PLC	125	Safety Information	8, 20
Open loop mode	14	Saving parameters	
Open loop vector mode	14	Sealed enclosure - sizing	45
Operating mode (changing)	90, 107	Serial comms lead	
Operating modes	14	Serial communications look-up table	245
Operating-mode selection		Single line descriptions	
Optimization	112	Sleep mode	
Options		Slip compensation	
Output contactor		SMARTCARD	
Output frequency	227	SMARTCARD operation	,
P		SMARTCARD trips	
Parameter access level	90	Solutions Module - fitting / removal	
Parameter ranges		Speed limits	
Parameter security		Speed loop gains	
Parameter x.00		Speed range	
PC communications		Speed reference selection	
Planning the installation		Speed-loop PID gains	
Power dissipation	221	Spin start boost	
Power ratings		Start up time	
Precision reference Analog input 1		Starts per hour	
Pre-heat		Status	89, 247
Product information	9	Status Indications	247
		Status information	105
Q		Stop mode selectors	100
Quadratic V/F mode	14	Stop modes	208
Quick start commissioning	110, 125	Storage	226
Quick start connections	107	Supply requirements	225
_		Supply types	63
R		Surface mounting the drive	27
Ramp mode selectors		Surge immunity of control circuits - long cables and	
Ramps	98	connections outside a building	
Ratings		Surge suppression for analog and bipolar inputs ar	
Reactor current ratings		Surge suppression for digital and unipolar inputs a	•
Real time clock		Switching frequency	118
Reference modes		т	
Relay contacts		T	
Residual current device (RCD)		Technical data	
Resistances (minimum)		Temperature	
Resolution		Terminal block in the enclosure	
RJ45 connector - connection details		Terminal cover removal	
Routine maintenance	57	Terminal sizes	
		Thermal protection circuit for the braking resistor .	
		Through-panel mounting the drive	
		Timer functions	
		Torque modes	
		Torque settings	
		Trip astoropias	
		Trip categories Trip History	
		Trip Indications	
		U	
		UL Listing Information	249
		User Security	
		User security	
		V	
		Variable maximums	132
		Vibration	
		Voltage boost	

W

Warning	s8
Weights	228

0474-0000-03